Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 10837, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407702

RESUMEN

The utilization of hybrid materials in separation technology, sorbents, direct air capture (DAC) technology, sensors, adsorbents, and chiral material recognition has increased in the past decade due to the recognized impact of atmospheric pollutants and hazardous industrial gases on climate change. A novel hybrid material, perchlorate hybrid (PClH), has been proposed in this study for the effective sensory detection and trapping of atmospheric pollutants and industrial hazardous gases. The study evaluated the structural properties, adsorption mechanism, electronic sensitivity, and topological analysis of PClH using highly accurate computational methods (M062X-D3BJ/def2-ccpVTZ and DSDPBEP86/def2-ccpVTZ). The computational analysis demonstrated that PClH has considerable adsorption energies and favorable interaction with CO2, NO2, SO2, COCl2, and H2S. PClH is more suitable for detecting liquefiable gases such as COCl2, CO2, and SO2, and can be easily recovered under ambient conditions. Developing such materials can contribute to reducing hazardous gases and pollutants in the atmosphere, leading to a cleaner and safer environment.

3.
Materials (Basel) ; 15(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431459

RESUMEN

The slow solvent evaporation approach was used to create a single crystal of (C7H6N3O2)2[ZnCl4] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P21/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl42- anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C-H…π). Hirshfeld's surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (C7H6N3O2)2[ZnCl4]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius' law. The frequency-temperature dependence of AC conductivity for the studied sample shows one region (Ea = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level.

4.
Materials (Basel) ; 15(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268855

RESUMEN

Two novel complexes, [(C7H10NO2)CdCl3]n(I) and [(C7H9NO2)CuCl2],havebeen synthesized and characterized. Single crystal X-ray diffraction revealed that in compound (I), 2,6-dimethanol pyridinium acts as a monodentate ligand through the O atom of the hydroxyl group. Contrarily, the 2,6-dimethanol pyridine ligand interacts tridentately with the Cu(II) ion via the nitrogen atoms and the two oxygen (O, O') atoms of the two hydroxyl groups. The structure's intermolecular interactions were studied using contact enrichment ratios and Hirshfeld surfaces. Following metal coordination, numerous hydrogen connections between entities and parallel displacement stacking interactions between pyridine rings dictate the crystal packing of both compounds. The aromatic cycles generate layers in the crystal for both substances. Powder XRD measurements confirmed the crystalline sample phase purity. SEM confirmed the surface homogeneity, whereas EDX semi-quantitative analysis corroborated the composition. IR spectroscopy identified vibrational absorption bands, while optical UV-visible absorption spectroscopy investigated optical properties. The thermal stability of the two materials was tested using TG-DTA.

5.
Acta Crystallogr C Struct Chem ; 76(Pt 6): 572-578, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499454

RESUMEN

The structure of the new salt 1-(o-tolyl)biguanidium chloride, C9H14N5+·Cl-, has been determined by single-crystal X-ray diffraction. The salt crystallizes in the monoclinic space group C2/c. In this structure, the chloride and biguanidium hydrophilic ions are mostly connected to each other via N-H...N and N-H...Cl hydrogen bonds to form layers parallel to the ab plane around y = 1/3 and y = 2/3. The 2-methylbenzyl groups form layers between these layers around y = 0 and y = 1/2, with the methyl group forming C-H...π interactions with the aromatic ring. Intermolecular interactions on the Hirshfeld surface were investigated in terms of contact enrichment and electrostatic energy, and confirm the role of strong hydrogen bonds along with hydrophobic interactions. A correlation between electrostatic energy and contact enrichment is found only for the strongly attractive (N-H...Cl-) and repulsive contacts. Electrostatic energies between ions reveal that the interacting biguanidium cation pairs are repulsive and that the crystal is maintained by attractive cation...Cl- dimers. The vibrational absorption bands were identified by IR spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA