Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 55(Pt 1): 154-167, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35145361

RESUMEN

The simple Euler polyhedral formula, expressed as an alternating count of the bounding faces, edges and vertices of any polyhedron, V - E + F = 2, is a fundamental concept in several branches of mathematics. Obviously, it is important in geometry, but it is also well known in topology, where a similar telescoping sum is known as the Euler characteristic χ of any finite space. The value of χ can also be computed for the unit polyhedra (such as the unit cell, the asymmetric unit or Dirichlet domain) which build, in a symmetric fashion, the infinite crystal lattices in all space groups. In this application χ has a modified form (χm) and value because the addends have to be weighted according to their symmetry. Although derived in geometry (in fact in crystallography), χm has an elegant topological interpretation through the concept of orbifolds. Alternatively, χm can be illustrated using the theorems of Harriot and Descartes, which predate the discovery made by Euler. Those historical theorems, which focus on angular defects of polyhedra, are beautifully expressed in the formula of de Gua de Malves. In a still more general interpretation, the theorem of Gauss-Bonnet links the Euler characteristic with the general curvature of any closed space. This article presents an overview of these interesting aspects of mathematics with Euler's formula as the leitmotif. Finally, a game is designed, allowing readers to absorb the concept of the Euler characteristic in an entertaining way.

2.
Acta Crystallogr A Found Adv ; 77(Pt 4): 317-326, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196293

RESUMEN

The notion of the Euler characteristic of a polyhedron or tessellation has been the subject of in-depth investigations by many authors. Two previous papers worked to explain the phenomenon of the vanishing (or zeroing) of the modified Euler characteristic of a polyhedron that underlies a periodic tessellation of a space under a crystallographic space group. The present paper formally expresses this phenomenon as a theorem about the vanishing of the Euler characteristic of certain topological spaces called topological orbifolds. In this new approach, it is explained that the theorem in question follows from the fundamental properties of the orbifold Euler characteristic. As a side effect of these considerations, a theorem due to Coxeter about the vanishing Euler characteristic of a honeycomb tessellation is re-proved in a context which frees the calculations from the assumptions made by Coxeter in his proof. The abstract mathematical concepts are visualized with down-to-earth examples motivated by concrete situations illustrating wallpaper and 3D crystallographic space groups. In a way analogous to the application of the classic Euler equation to completely bounded solids, the formula proven in this paper is applicable to such important crystallographic objects as asymmetric units and Dirichlet domains.

3.
Acta Crystallogr A Found Adv ; 77(Pt 2): 126-129, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33646198

RESUMEN

The puzzling observation that the famous Euler's formula for three-dimensional polyhedra V - E + F = 2 or Euler characteristic χ = V - E + F - I = 1 (where V, E, F are the numbers of the bounding vertices, edges and faces, respectively, and I = 1 counts the single solid itself) when applied to space-filling solids, such as crystallographic asymmetric units or Dirichlet domains, are modified in such a way that they sum up to a value one unit smaller (i.e. to 1 or 0, respectively) is herewith given general validity. The proof provided in this paper for the modified Euler characteristic, χm = Vm - Em + Fm - Im = 0, is divided into two parts. First, it is demonstrated for translational lattices by using a simple argument based on parity groups of integer-indexed elements of the lattice. Next, Whitehead's theorem, about the invariance of the Euler characteristic, is used to extend the argument from the unit cell to its asymmetric unit components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA