Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 48211-48222, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189921

RESUMEN

Human skin has several receptors collaborating with the brain to provide appropriate "decisions" when applying stimuli. Several research articles state that biomimetic electronic skin (e-skin) is reportedly used for sensor-related applications and performs similarly to natural skin. However, research reporting the capability of the e-skin to make decisions and therefore react upon exposure to adverse conditions is still in its nascent stage. Herein, we report the development of an e-skin, ThermoSense, that can thermoregulate by making appropriate decisions. Thermoplastic polyurethane and multiwalled carbon nanotubes were used as the model composite. The heating and sensing capabilities of the optimized e-skin were studied in detail. In the study window, the e-skin demonstrated excellent electrothermal conversion efficiency by generating a temperature of 192 °C, consuming a power of 2.23 W. A finite element modeling (FEM) was adopted to determine the distribution of the filler in the case of the optimized e-skin and thus was used to probe the reason for the heating across the e-skin via mapping of the internal energy across the sample. FEM results and experimental findings are in strong agreement. Additionally, the e-skin demonstrated its capability to act as a thermal sensor with a 0.947% °C-1 sensitivity. To integrate the decision-making capabilities of the e-skin, an Internet of Things (IoT) brain console was made using the e-skin and electronic chips by leveraging More than Moore's concept. The IoT brain was automated with decision-making programming that was controllable via an in-house-developed mobile application. The console worked exclusively under simulated conditions. When there was a shift from the set point temperature, it started to heat. Postusage, the e-skin matrix was recycled, and the recycled e-skin demonstrated a marginal decrement in performance attributes. This study opens new avenues for developing decision-making e-skins for next-generation human-machine interphases.


Asunto(s)
Nanotubos de Carbono , Poliuretanos , Dispositivos Electrónicos Vestibles , Nanotubos de Carbono/química , Poliuretanos/química , Humanos , Internet de las Cosas , Toma de Decisiones , Encéfalo/fisiología , Piel/química
2.
ACS Appl Mater Interfaces ; 14(51): 57265-57280, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36519850

RESUMEN

Developing sensors for monitoring physiological parameters such as temperature and strain for point of care (POC) diagnostics is critical for better care of the patients. Various commercial sensors are available to get the job done; however, challenges like the structural rigidity of such sensors confine their usage. As an alternative, flexible sensors have been looked upon recently. In most cases, flexible sensors cannot discriminate the signals from different stimuli. While there have been reports on the printable sensors providing cross-talk-free solutions, research related to developing sensors from a sustainable source providing discriminability between signals is not well-explored. Herein, we report the development of a stencil printable composition made of graphene and epoxidized natural rubber. The stencil printability index was vetted using rheological studies. Post usage, the developed sensor was dissolved in an organic solvent at room temperature. This, along with the choice of a sustainable elastomer, warrants the minimization of electronic waste and carbon footprint. The developed material demonstrated good conformability with the skin and could perceive and decouple the signals from temperature and strain without inducing any crosstalks. Using a representative volume element model, a comparison between experimental findings and computation studies was made. The developed sensors demonstrated gauge factors of -506 and 407 in the bending strain regimes of 0-0.04% and 0.04%-0.09%, respectively, while the temperature sensitivity was noted to be -0.96%/°C. The printed sensors demonstrated a multifunctional sensing behavior for monitoring various active physiological parameters ranging from temperature, strain, pulse, and breathing to auditory responses. Using a Bluetooth module, various parameters like temperature and strain could be monitored seamlessly in a smart-phone. The current development would be crucial to open new avenues to fabricate crosstalk-free sensors from sustainable sources for POC diagnostics.


Asunto(s)
Grafito , Dispositivos Electrónicos Vestibles , Humanos , Elastómeros/química , Temperatura , Pruebas en el Punto de Atención
3.
ACS Appl Mater Interfaces ; 14(40): 45921-45933, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170637

RESUMEN

Developing a printed elastomeric wearable sensor with good conformity and proper adhesion to skin, coupled with the capability of monitoring various physiological parameters, is very crucial for the development of point-of-care sensing devices with high precision and sensitivity. While there have been previous reports on the fabrication of elastomeric multifunctional sensors, research on the printable elastomeric multifunctional adhesive sensor is not very well explored. Herein, we report the development of a stencil printable multifunctional adhesive sensor fabricated in a solvent-free condition, which demonstrated the capability of having good contact with skin and its ability to function as a temperature and strain sensor. Functionalized liquid isoprene rubber was selected as the matrix while carboxylated multiwalled carbon nanotubes (c-CNTs) were used as the nanofiller. The selection of the above model compounds facilitated the printability and also helped the same composition to demonstrate stretchability and adhesiveness. A realistic three-dimensional microstructure (representative volume element model) was generated through a computational framework for the current c-CNT-liquid elastomer. Further computational simulations were performed to test and validate the correlation between electrical responses to that of experimental studies. Various physiological parameters like motion sensing, pulse, respiratory rate, and phonetics detection were detected by leveraging the electrically resistive nature of the sensor. This development route can be extended toward developing different innovative adhesives for point-of-care sensing applications.


Asunto(s)
Nanotubos de Carbono , Adhesivos , Elastómeros , Monitoreo Fisiológico , Nanotubos de Carbono/química , Goma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA