Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e35813, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220909

RESUMEN

Microbial-induced calcite precipitation (MICP) is an environmentally friendly process that can be used to enhance soil surface stability against wind erosion. In this study, the performance of the MICP process on soil surface improvement was investigated using Staphylococcus warneri IR-103 bacteria. The biostabilizer, containing S. warneri suspension and a cementation solution consisting of 0.5 mM CaCl2 and 1.5 mM urea, was sprayed on fine-grain soil to induce a surface MICP reaction. Soil surface strength was measured using a penetrometer test, and wind tunnel tests were conducted to evaluate the soil surface's resistance to wind erosion. Scanning electron microscopy (SEM) analysis of the treated soils was conducted to visualize carbonate crystal formations within and on the soil particles. Additionally, X-ray diffraction (XRD) was used to confirm the presence and identify the crystal structures. The ecotoxicological assessment of the biostabilizer was carried out by performing phytotoxicity and oral/dermal/ocular in vivo acute toxicity experiments due to a few case reports of S. warneri's harmfulness and virulence of coagulase-negative staphylococci, highlighting the need for safety measures for workers and end-users. Mixing cementation solution with bacterial suspension in yeast-ammonium chloride medium increased soil strength and durability. The biostabilizer did not harm the seed germination of Agropyron desertorum, and the soil surface remained resistant to wind erosion. Rat oral/dermal acute toxicity tests revealed no adverse effects during the 14-day observation period. The LD50 (median lethal dose) cut-off value of the biostabilizer in oral and dermal administrations was 5000 and 1000 mg/kg body weight, respectively. Ocular administration of a 0.1 mL drop did not induce eye irritation in rabbits. In conclusion, the use of the biostabilizer for wind erosion control appears to be technically and environmentally feasible and justifiable.

2.
Sci Rep ; 7(1): 1523, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484258

RESUMEN

Early studies on sand dune movement and desertification in Iran have not always been convincingly demonstrated because of problems with the field-based measurements. In some areas where various land uses have been engulfed by aeolian sand dunes, desertification is clear, but in other less settled areas, it may not be so obvious. The objective of this study is to demonstrate encroachments of the Rigboland sand sea, central Iran, in its different directions and variable magnitude rates. Determining the rate and direction of the sand sea movements is critical for specifying which lands should be prioritized and quickly protected. The study has trialed a change detection technique which uses a Cross-Tabulation module to compare two available LandsatTM images over the Rigboland sand sea. This indicates that within a ten-year span (from 1988 to 1998) more than 200 ha/yr were added to the Rigboland sand sea, from the alluvial fan landforms in the eastern upstream, outer margins of the Rigboland sand sea. Coupled with GIS techniques, this type of analysis of the remote sensing (RS) images provides an effective tool for the monitoring and prognostication of sand dune movement and sand sea change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA