Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37998861

RESUMEN

The genus Pyricularia includes species that are phytopathogenic fungi, which infect different species of Poaceae, such as rice and sorghum. However, few isolates have been genetically characterized in North America. The current study addresses this lack of information by characterizing an additional 57 strains of three grasses (Stenotaphrum secundatum, Cenchrus ciliaris and Digitaria ciliaris) from two distant regions of Mexico. A Pyricularia dataset with ITS sequences retrieved from GenBank and the studied sequences were used to build a haplotype network that allowed us to identify a few redundant haplotypes highly related to P. oryzae species. An analysis considering only the Mexican sequences allowed us to identify non-redundant haplotypes in the isolates of C. ciliaris and D. ciliaris, with a high identity with P. pennisetigena. The Pot2-TIR genomic fingerprinting technique resulted in high variability and allowed for the isolates to be grouped according to their host grass, whilst the ERIC-PCR technique was able to separate the isolates according to their host grass and their region of collection. Representative isolates from different host grasses were chosen to explore the pathogenic potential of these isolates. The selected isolates showed a differential pathogenic profile. Cross-infection with representative isolates from S. secundatum and C. ciliaris showed that these were unable to infect D. ciliaris grass and that the DY1 isolate from D. ciliaris was only able to infect its host grass. The results support the identification of pathogenic strains of Pyricularia isolates and their cross-infection potential in different grasses surrounding important crops in Mexico.

2.
Front Plant Sci ; 14: 1195794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441182

RESUMEN

Introduction: The fungal pathogen Fusarium verticillioides (Sacc.) Nirenberg (Fv) causes considerable agricultural and economic losses and is harmful to animal and human health. Fv can infect maize throughout its long agricultural cycle, and root infection drastically affects maize growth and yield. Methods: The root cell wall is the first physical and defensive barrier against soilborne pathogens such as Fv. This study compares two contrasting genotypes of maize (Zea mays L.) roots that are resistant (RES) or susceptible (SUS) to Fv infection by using transcriptomics, fluorescence, scanning electron microscopy analyses, and ddPCR. Results: Seeds were infected with a highly virulent local Fv isolate. Although Fv infected both the RES and SUS genotypes, infection occurred faster in SUS, notably showing a difference of three to four days. In addition, root infections in RES were less severe in comparison to SUS infections. Comparative transcriptomics (rate +Fv/control) were performed seven days after inoculation (DAI). The analysis of differentially expressed genes (DEGs) in each rate revealed 733 and 559 unique transcripts that were significantly (P ≤0.05) up and downregulated in RES (+Fv/C) and SUS (+Fv/C), respectively. KEGG pathway enrichment analysis identified coumarin and furanocoumarin biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction pathways as being highly enriched with specific genes involved in cell wall modifications in the RES genotype, whereas the SUS genotype mainly displayed a repressed plant-pathogen interaction pathway and did not show any enriched cell wall genes. In particular, cell wall-related gene expression showed a higher level in RES than in SUS under Fv infection. Analysis of DEG abundance made it possible to identify transcripts involved in response to abiotic and biotic stresses, biosynthetic and catabolic processes, pectin biosynthesis, phenylpropanoid metabolism, and cell wall biosynthesis and organization. Root histological analysis in RES showed an increase in lignified cells in the sclerenchymatous hypodermis zone during Fv infection. Discussion: These differences in the cell wall and lignification could be related to an enhanced degradation of the root hairs and the epidermis cell wall in SUS, as was visualized by SEM. These findings reveal that components of the root cell wall are important against Fv infection and possibly other soilborne phytopathogens.

3.
Front Plant Sci ; 14: 1066509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875614

RESUMEN

Diverse morphological, cellular and physiological changes occur during seed maturation in Bixa orellana when the seed tissues form specialized cell glands that produce reddish latex with high bixin amounts. Transcriptomic profiling during seed development in three B. orellana accessions (P12, N4 and N5) with contrasting morphologic characteristics showed enrichment in pathways of triterpenes, sesquiterpenes, and cuticular wax biosynthesis. WGCNA allows groups of all identified genes in six modules the module turquoise, the largest and highly correlated with the bixin content. The high number of genes in this module suggests a diversification of regulatory mechanisms for bixin accumulation with the genes belonging to isoprene, triterpenes and carotene pathways, being more highly correlated with the bixin content. Analysis of key genes of the mevalonate (MVA) and the 2C-methyl-D-erythritol-4-phosphate (MEP) pathways revealed specific activities of orthologs of BoHMGR, BoFFP, BoDXS, and BoHDR. This suggests that isoprenoid production is necessary for compounds included in the reddish latex of developing seeds. The carotenoid-related genes BoPSY2, BoPDS1 and BoZDS displayed a high correlation with bixin production, consistent with the requirement for carotene precursors for apocarotenoid biosynthesis. The BoCCD gene member (BoCCD4-4) and some BoALDH (ALDH2B7.2 and ALDH3I1) and BoMET (BoSABATH1 and BoSABATH8) gene members were highly correlated to bixin in the final seed development stage. This suggested a contributing role for several genes in apocarotenoid production. The results revealed high genetic complexity in the biosynthesis of reddish latex and bixin in specialized seed cell glands in different accessions of B. orellana suggesting gene expression coordination between both metabolite biosynthesis processes.

4.
Genome ; 64(9): 879-891, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33555972

RESUMEN

Technological and analytical advances to study evolutionary biology, ecology, and conservation of green turtles (Chelonia mydas) are realized through molecular approaches including DNA barcoding. We characterized the usefulness of COI DNA barcodes in green turtles in Mexico to better understand genetic divergence and other genetic parameters of this species. We analyzed 63 sequences, including 25 from green turtle field specimens collected from the Gulf of Mexico and from the Mexican Pacific and 38 already present in the Barcode of Life Data Systems (BOLD). A total of 13 haplotypes were identified with four novel haplotypes from the Pacific Ocean and three novel haplotypes from the Atlantic Ocean. Intraspecific distance values among COI gene sequences by two different models were 0.01, demonstrating that there is not a subdivision for green turtle species. Otherwise, the interspecific distance interval ranged from 0.07 to 0.13, supporting a clear subdivision among all sea turtle species. Haplotype and total nucleotide diversity values of the COI gene reflect a medium genetic diversity average. Green turtles of the Mexican Pacific showed common haplotypes to some Australian and Chinese turtles, but different from the haplotypes of the Mexican Atlantic. COI analysis revealed new haplotypes and confirmed that DNA barcodes were useful for evaluation of the population diversity of green turtles in Mexico.


Asunto(s)
Código de Barras del ADN Taxonómico , Tortugas , Animales , Especies en Peligro de Extinción , Haplotipos , México , Tortugas/genética
5.
J Food Prot ; 83(9): 1495-1504, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32236559

RESUMEN

ABSTRACT: Colletotrichum species are the most important postharvest spoilage fungi of papaya fruit. The objective of this research was to evaluate the effect of temperature and relative humidity on growth rate and time for growth to become visible of five strains of Colletotrichum gloeosporioides isolated from papaya fruit in a complex medium. As a primary model, the radial growth rates were estimated using the Baranyi and Roberts model in papaya agar. The Solver MS Excel function was used to obtain the time to visible mycelium (tv). Secondary models obtained with the Rosso et al. cardinal model of inflection were applied to describe the effect of temperature on the growth rate (µ). The Arrhenius-Davey model was used to model tv. The obtained models seem to be satisfactory for describing both µ and tv. The relative humidity had an effect on µ and tv for all tested C. gloeosporioides isolates, but no model accurately described the behavior of the fungus. External validation of models was performed with papaya fruit. Growth models were developed with the same models used in vitro. The bias and the accuracy factors as indices for performance evaluation of predictive models in food microbiology as a function of temperature and RH were 1.22 and 1.33, respectively, for µ and 1.18 and 1.62, respectively, for tv, indicating accurate predictions. The supply chain of papaya is complex and requires constant conditions, and poor conditions can result in damage to the fruit. Knowledge of the behavior of C. gloeosporioides on papaya fruit and application of the developed models in the supply chain will help to establish transport control strategies to combat these fungi. This research has contributed to development of the first models of growth for C. gloeosporioides in Mexico.


Asunto(s)
Carica , Colletotrichum , Frutas , México , Enfermedades de las Plantas
6.
Food Technol Biotechnol ; 57(4): 544-553, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32123516

RESUMEN

Mezcal is a distillate produced by spontaneous fermentation of the must obtained from stalks of Agave spp. plants that are cooked and pressed. Agave must contains a high amount of fructose and phenolic compounds, and fermentation usually occurs under stressful (and uncontrolled) environmental conditions. Yeasts capable of growing under such conditions usually display advantageous biological and industrial traits for stress tolerance such as flocculation. In this study, seven Saccharomyces cerevisiae strains isolated from mezcal must were exposed to temperatures ranging between 10 and 40 °C, and to different sugar sources (fructose or glucose). Yeasts grown in fructose increased their stress tolerance, determined by colony count in a microdrop assay, under low temperature (10 °C) compared to the growth at 40 °C on solid cultures. The most stress-tolerant mezcal strain (Sc3Y8) and a commercial wine (Fermichamp) strain, used as control, were grown under fermentation conditions and exposed to long-term temperature stress to determine their performance and their potential for flocculation. Compared to glucose, fermentation on fructose increased the metabolite accumulation at the end of culture, particularly at 40 °C, with 2.3, 1.3 and 3.4 times more glycerol (8.6 g/L), ethanol (43.6 g/L) and acetic acid (7.3 g/L), respectively. Using confocal microscopy analysis, we detected morphological changes such as aggregation and wall recognition at the level of budding scars in yeast, particularly in the Sc3Y8 strain when it was exposed to 40 °C. The analysis confirmed that this mezcal strain was positive for flocculation in the presence of Ca2+ ions. Analysis of FLO1, FLO5 and FLO11 gene expression implicated in flocculation in both Saccharomyces strains showed a strong transcriptional induction, mainly of the FLO5 gene in the mezcal Sc3Y8 strain.

7.
Electron. j. biotechnol ; Electron. j. biotechnol;15(4): 4-4, July 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-646954

RESUMEN

Background: Urban surface stones in Mexico City are exposed to a temperate climate and a range of atmospheric conditions ranging from mildly impacted to heavily polluted areas. In this study, we focused on the characterization of the cultivable fungal component of selected biological patinas in the surrounding area of Chapultepec castle, a historic monument in Mexico City. Thirty four representative fungal isolates selected based on distinctive differential macroscopic characteristics out of a total of 300 fungi, were characterized using morphological and molecular approaches. Results: This identification strategy based on the combination of phenotypic- and molecular-based methodologies allowed us to discriminate the fungal community in some cases down to the species level. Conclusions: The characterization of this mycoflora revealed the presence of a complex fungal community mainly represented by filamentous fungi belonging to the genera Fusarium, Trichoderma, Aspergillus, Cladosporium, Alternaria, Mucor, Penicillium, Pestalotiopsis, and the dimorphic fungus Aureobasidium, along with the yeast Rhodotorula. A specific distribution of fungi could be observed based on the type of biological patina analyzed.


Asunto(s)
Edificios , Hongos/aislamiento & purificación , Hongos/genética , Características del Suelo , Área Urbana , ADN de Hongos/genética , Atmósfera , Técnicas de Cultivo , Variación Genética , México , Fenotipo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
8.
Biotechnol Lett ; 28(11): 787-91, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16786242

RESUMEN

The expression of mRNAs coding for 1-deoxyxylulose-5-phosphate synthase (DXS) and phytoene synthase (PSY) were studied in Dunaliella salina grown under nitrogen-sufficient (NS) and nitrogen-limited (NL) conditions. Under NS conditions growth was 2.5 times higher than under NL conditions. No differences were found in chlorophyll a content per cell, and total carotenoid content per cell was 5.33 pg 1(-1) for the NS treatment and 7.76 pg 1(-1) for the NL. DXS transcripts exhibited diminished expression under NL conditions, peaking at day 15 of cultivation in both treatments. Simultaneously, PSY transcripts exhibited constant expression under both conditions. These results suggest that these genes play an important role in the balance of photosynthetic pigments during pigment accumulation.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Carotenoides/metabolismo , Chlorophyta/genética , Transferasas/metabolismo , Transferasas Alquil y Aril/genética , Carotenoides/genética , Chlorophyta/enzimología , Regulación de la Expresión Génica/fisiología , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Transferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA