Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39070230

RESUMEN

Mosquito control, which is not always easily accomplished, is further complicated by the spread of invasive species. This is the case of Aedes koreicus, a mosquito native to East Asia, whose presence has been recorded in several European countries, including Italy. This mosquito found suitable ecological conditions in central Europe in general, and in northern Italy in particular, as shown by the ongoing expansion of its distribution. While basic knowledge on feeding habits of Ae. koreicus have already been acquired, information on its vectorial competence is scarce. Therefore, active monitoring on the presence of this mosquito, and the pre-planning of future control actions, are of paramount importance. Currently, there are no specific guidelines for controlling this mosquito, both in its native regions and in invaded countries. Here we present the first study on the efficacy of a bioinsecticide based on Bacillus thuringiensis on Ae. koreicus larvae, with a comparison with results obtained on the tiger mosquito Aedes albopictus. Our results proved that this bioinsecticide is effective on Ae. koreicus, both dissolved in water and incorporated into MosChito raft, a hydrogel-based matrix that has recently been developed for the delivery of insecticides to other mosquito species and suitable for safe and eco-compatible applications.

2.
Parasit Vectors ; 16(1): 223, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415250

RESUMEN

BACKGROUND: Aedes koreicus is a mosquito species native to East Asia which has recently invaded several countries in Europe. In Italy, this mosquito was first detected in the North-East in 2011 and is now widely distributed in the entire northern part of the country. The development of specific genetic markers, such as microsatellites, is necessary to uncover the dispersal routes of this mosquito from its native areas and, eventually, to plan future control interventions. METHODS: Available raw sequences of genomic DNA of Ae. koreicus were screened in silico using BLASTn to identify possible microsatellite-containing sequences. Specific primer pairs were then designed, and their efficiency was determined through polymerase chain reaction (PCR) on 32 individuals of Ae. koreicus collected in Italy. PCR conditions were optimised in three multiplex reactions. Genotyping of individual mosquitoes was performed on both single and multiplex PCR reactions. Finally, analysis of intra-population variation was performed to assess the level of polymorphism of the markers. RESULTS: Mosquito genotyping provided consistent results in both single and multiplex reactions. Out of the 31 microsatellite markers identified in the Ae. koreicus genome raw sequences, 11 were polymorphic in the examined mosquito samples. CONCLUSIONS: The results show that the 11 microsatellite markers developed here hold potential for investigating the genetic structure of Ae. koreicus populations. These markers could thus represent a novel and useful tool to infer the routes of invasion of this mosquito species into Europe and other non-native areas.


Asunto(s)
Aedes , Humanos , Animales , Aedes/genética , Europa (Continente) , Italia , Polimorfismo Genético , Repeticiones de Microsatélite , Mosquitos Vectores/genética , Especies Introducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA