Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Chromatogr ; : e6001, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233497

RESUMEN

This study validates a stability-indicating LC method for detecting organic impurities in the chlorzoxazone dosage form. Using a Waters X-Select R HSS T3 analytical column, mobile phase of it was made by mixing of water, methanol, and glacial acetic acid in the ratio of 700:300:10 (v/v/v). The drug product and drug substance were subjected to the stress conditions such as acid, base, oxidation, heat, and photolysis as per the recommendations of the International Conference on Harmonization (Q2) methodology. The study revealed the susceptibility of 4-chloro-2-aminophenol to alkaline environments, emphasizing peak homogeneity and stability. The method verification, per ICH guidelines and USP<1225>, established precision, specificity, linearity, accuracy, and robustness for quality control. The mean impurity recovery ranged from 95.5% to 105.2%, the correlation coefficient (r) was greater than 1.000, and the RSD values (n = 6) ranged from 0.6% to 5.1% across the LOQ-150% ranges. Full-factorial design tested final method conditions, evaluating multiple parameters concurrently. Graphical optimization within the design space defined strong method requirements, ensuring consistent and reliable outcomes. The study develops and validates chlorzoxazone stability-indicating methods, employing advanced statistical approaches like design of experiments and factorial design, with resilient conditions established through graphical optimization of the design space.

2.
J Environ Sci Health B ; 55(4): 396-405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31905102

RESUMEN

Bentazone is one of the toxic insecticides used to control forest tent caterpillar moths, boll weevils, gypsy moths, and other types of moths in various field crops. We report the efficacy of biochar prepared from the Azardirachta Indica waste biomass as adsorbent for removal of Bentazone. Biochar material was prepared by pyrolysis process under limited oxygen conditions. Biochar material was characterized by proximate and ultimate analysis, SEM analysis, FTIR analysis and TG/DTA analyses. The Bentazone adsorption capacity by biochar from aqueous solutions was assessed. Effect of time, adsorbent dosage, insecticide concentration and pH on the adsorption characteristics of the biochar were evaluated. Adsorption parameters were obtained at equilibrium contact time of 150 min, with biochar dosage of 0.5 g at pH 8. From the optimization studies, desirability of 0.952 was obtained with response (adsorption uptake) of 79.40 mg/g, for initial concentration of insecticide (50 mg/L), adsorbent dosage (0.448 g), time 30.0 min and pH 2. The adsorption isotherm data for the removal of Bentazone fitted well with the Freundlich isotherm. This study indicates that the biochar produced from the bark of Azardirachta Indica biomass could be employed as a potential adsorbent for removal of synthetic organic pollutants from the water streams.


Asunto(s)
Benzotiadiazinas/aislamiento & purificación , Carbón Orgánico/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Azadirachta/química , Benzotiadiazinas/química , Biomasa , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/aislamiento & purificación , Cinética , Corteza de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA