RESUMEN
Service sire has a major effect on reproductive success in dairy cattle. Recent studies have reported accurate predictions for Holstein bull fertility using genomic data. The objective of this study was to assess the feasibility of genomic prediction of sire conception rate (SCR) in US Jersey cattle using alternative predictive models. Data set consisted of 1.5k Jersey bulls with SCR records and 95k SNP covering the entire genome. The analyses included the use of linear and Gaussian kernel-based models fitting either all the SNP or subsets of markers with presumed functional roles, such as SNP significantly associated with SCR or SNP located within or close to annotated genes. Model predictive ability was evaluated using 5-fold cross-validation with 10 replicates. The entire SNP set exhibited predictive correlations around 0.30. Interestingly, either SNP marginally associated with SCR or genic SNP achieved higher predictive abilities than their counterparts using random sets of SNP. Among alternative SNP subsets, Gaussian kernel models fitting significant SNP achieved the best performance with increases in predictive correlation up to 7% compared with the standard whole-genome approach. Notably, the use of a multi-breed reference population including the entire US Holstein SCR data set (11.5k bulls) allowed us to achieve predictive correlations up to 0.315, gaining 8% in accuracy compared with the standard model fitting a pure Jersey reference set. Overall, our findings indicate that genomic prediction of Jersey bull fertility is feasible. The use of Gaussian kernels fitting markers with relevant roles and the inclusion of Holstein records in the training set seem to be promising alternatives to the standard whole-genome approach. These results have the potential to help the dairy industry improve US Jersey sire fertility through accurate genome-guided decisions.
Asunto(s)
Bovinos/genética , Fertilidad/genética , Animales , Industria Lechera , Análisis de Datos , Femenino , Genoma , Genotipo , Masculino , Modelos Biológicos , Polimorfismo de Nucleótido Simple , EmbarazoRESUMEN
BACKGROUND: Research on loci influencing milk production traits of dairy cattle is one of the main topics of investigation in livestock. Many genomic regions and polymorphisms associated with dairy production have been reported worldwide. In this context, the purpose of this study was to identify candidate loci associated with milk yield in Argentinean dairy cattle. A database of candidate genes and single nucleotide polymorphisms (SNPs) for milk production and composition was developed. Thirty-nine SNPs belonging to 22 candidate genes were genotyped on 1643 animals (Holstein and Holstein x Jersey). The genotypes obtained were subjected to association studies considering the whole population and discriminating the population by Holstein breed percentage. Phenotypic data consisted of milk production values recorded during the first lactation of 1156 Holstein and 462 Holstein x Jersey cows from 18 dairy farms located in the central dairy area of Argentina. From these records, 305-day cumulative milk production values were predicted. RESULTS: Eight SNPs (rs43375517, rs29004488, rs132812135, rs137651874, rs109191047, rs135164815, rs43706485, and rs41255693), located on six Bos taurus autosomes (BTA4, BTA6, BTA19, BTA20, BTA22, and BTA26), showed suggestive associations with 305-day cumulative milk production (under Benjamini-Hochberg procedure with a false discovery rate of 0.1). Two of those SNPs (rs43375517 and rs135164815) were significantly associated with milk production (Bonferroni adjusted p-values < 0.05) when considering the Holstein population. CONCLUSIONS: The results obtained are consistent with previously reported associations in other Holstein populations. Furthermore, the SNPs found to influence bovine milk production in this study may be used as possible candidate SNPs for marker-assisted selection programs in Argentinean dairy cattle.