RESUMEN
The Mexican axolotl (Ambystoma mexicanum) provides an excellent model for studying heart development since it carries a cardiac lethal mutation in gene c that results in failure of contraction of mutant embryonic myocardium. In cardiac mutant axolotls (c/c) the hearts do not beat, apparently because of an absence of organized myofibrils. To date, there has been no way to analyze the genotypes of embryos from heterozygous spawnings (+/c x +/c) until stage 35 when the normal (+/c or +/+) embryos first begin to have beating hearts; mutant (c/c) embryos fail to develop normal heartbeats. In the present study, we created chimeric axolotls by using microsurgical techniques. The general approach was to transect tailbud embryos and join the anterior and posterior halves of two different individuals. The chimeric axolotl is composed of a normal head and heart region (+/+), permitting survival and a mutant body containing mutant gonads (c/c) that permits the production of c/c mutant offspring: 100% c/c offspring were obtained by mating c/c chimeras (c/c x c/c). The mutant phenotypes were confirmed by the absence of beating hearts and death at stage 41 in 100% of the embryos. Examination of the mutant hearts with electron microscopy and comfocal microscopy after immunofluorescent staining for tropomyosin showed identical images to those described previously in naturally-occurring c/c mutant axolotls (i.e., lacking organized sarcomeric myofibrils). These "c/c chimeric" axolotls provide a useful and unique way to investigate early embryonic heart development in cardiac mutant Mexican axolotls.
Asunto(s)
Ambystoma/embriología , Ambystoma/genética , Quimera , Corazón/embriología , Modelos Animales , Mutación , Animales , Femenino , Genotipo , Masculino , Microscopía Confocal , Microscopía Electrónica , Miocardio/ultraestructura , Fenotipo , Factores de TiempoRESUMEN
Ambystoma mexicanum is an intriguing animal model for studying heart development because it carries a mutation in gene c. Hearts of homozygous recessive (c/c) mutant embryos do not contain organized myofibrils and fail to beat. However, the defect can be corrected by organ-culturing the mutant heart in the presence of RNA from anterior endoderm or RNA from endoderm mesoderm-conditioned medium. We constructed a cDNA library from total conditioned medium RNA in a pcDNAII expression vector. We screened the cDNA library by an organ culture bioassay and isolated a single clone (Cl#4), the synthetic RNA from which corrects the heart defect by promoting myofibrillogenesis. The insert size of the active clone is 166 nt in length with a unique nucleotide sequence. The anti-sense RNA from Cl#4 using SP6 RNA polymerase failed to rescue mutant hearts. The ability of this small RNA to correct the mutant heart defect suggests that the RNA probably does not act as an mRNA. While the precise mechanism of action is not yet known, on the basis of our studies to date it is very clear that the sense strand of Cl#4 RNA has the ability to promote myofibrillogenesis and rescue the mutant hearts both in vitro and in vivo.