Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
PLoS One ; 18(12): e0285241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38134185

RESUMEN

Plant root development involves multiple signal transduction pathways. Notably, phytohormones like auxin and cytokinin are well characterized for their molecular mechanisms of action. Reactive oxygen species (ROS) serve as crucial signaling molecules in controlling root development. The transcription factor, UPBEAT1 (UPB1) is responsible for maintaining ROS homeostasis at the root tip, influencing the transition from cell proliferation to differentiation. While UPB1 directly regulates peroxidase expression to control ROS homeostasis, it targets genes other than peroxidases, suggesting its involvement in root growth through non-ROS signals. Our investigation focused on the transcription factor MYB50, a direct target of UPB1, in Arabidopsis thaliana. By analyzing multiple fluorescent proteins and conducting RNA-seq and ChIP-seq, we unraveled a step in the MYB50 regulatory gene network. This analysis, in conjunction with the UPB1 regulatory network, demonstrated that MYB50 directly regulates the expression of PECTIN METHYLESTERASE INHIBITOR 8 (PMEI8). Overexpressing PMEI8, similar to the MYB50, resulted in reduced mature cell length. These findings establish MYB50 as a regulator of root growth within the UPB1 gene regulatory network. Our study presents a model involving transcriptional regulation by MYB50 in the UPB1 regulated root growth system and sheds light on cell elongation via pectin modification.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hidrolasas de Éster Carboxílico , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hidrolasas de Éster Carboxílico/genética
3.
Plant Cell Physiol ; 64(11): 1397-1406, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37705303

RESUMEN

Circadian clocks are biological timekeeping systems that coordinate genetic, metabolic and physiological behaviors with the external day-night cycle. The clock in plants relies on the transcriptional-translational feedback loops transcription-translation feedback loop (TTFL), consisting of transcription factors including PSUEDO-RESPONSE REGULATOR (PRR) proteins, plant lineage-specific transcriptional repressors. Here, we report that a novel synthetic small-molecule modulator, 5-(3,4-dichlorophenyl)-1-phenyl-1,7-dihydro-4H-pyrazolo[3,4-d] pyrimidine-4,6(5H)-dione (TU-892), affects the PRR7 protein amount. A clock reporter line of Arabidopsis was screened against the 10,000 small molecules in the Maybridge Hitfinder 10K chemical library. This screening identified TU-892 as a period-lengthening molecule. Gene expression analyses showed that TU-892 treatment upregulates CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) mRNA expression. TU-892 treatment reduced the amount of PRR7 protein, a transcriptional repressor of CCA1. Other PRR proteins including TIMING OF CAB EXPRESSION 1 were altered less by TU-892 treatment. TU-892-dependent CCA1 upregulation was attenuated in mutants impaired in PRR7. Collectively, TU-892 is a novel type of clock modulator that reduces the levels of PRR7 protein.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas
4.
Biosci Biotechnol Biochem ; 86(12): 1623-1630, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149326

RESUMEN

Nonhost resistance (NHR) is the most robust and durable resistance in plants, but its spatiotemporal regulation is poorly understood. The circadian clock functions in a tissue-specific manner and regulates individual physiological processes in plants. Using mutant and RNA-seq analyses, we revealed a role of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in tissue-specific and time-of-day-specific regulation of NHR to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana (Arabidopsis). Targeted perturbation of CCA1 function in epidermis compromised time-of-day-specific regulation of NHR to P. oryzae in Arabidopsis. RNA-seq analysis showed that P. oryzae inoculation alters the transcriptome in penetration 2 (pen2) plants and identified POWDERY MILDEW RESISTANCE 5 (PMR5) as a candidate gene of direct targets of CCA1. Time-of-day-specific penetration resistance to P. oryzae was reduced in Arabidopsis pen2 pmr5 mutant plants. These findings suggest that epidermal CCA1 and PMR5 contribute to the establishment of time-of-day-specific NHR to P. oryzae in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/metabolismo , Relojes Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Epidermis/metabolismo , Ritmo Circadiano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plant Cell Physiol ; 63(11): 1720-1728, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36043692

RESUMEN

The circadian clock, an internal time-keeping system with a period of about 24 h, coordinates many physiological processes with the day-night cycle. We previously demonstrated that BML-259 [N-(5-isopropyl-2-thiazolyl) phenylacetamide], a small molecule with mammal CYCLIN DEPENDENT KINASE 5 (CDK5)/CDK2 inhibition activity, lengthens Arabidopsis thaliana (Arabidopsis) circadian clock periods. BML-259 inhibits Arabidopsis CDKC kinase, which phosphorylates RNA polymerase II in the general transcriptional machinery. To accelerate our understanding of the inhibitory mechanism of BML-259 on CDKC, we performed structure-function studies of BML-259 using circadian period-lengthening activity as an estimation of CDKC inhibitor activity in vivo. The presence of a thiazole ring is essential for period-lengthening activity, whereas acetamide, isopropyl and phenyl groups can be modified without effect. BML-259 analog TT-539, a known mammal CDK5 inhibitor, did not lengthen the period nor did it inhibit Pol II phosphorylation. TT-361, an analog having a thiophenyl ring instead of a phenyl ring, possesses stronger period-lengthening activity and CDKC;2 inhibitory activity than BML-259. In silico ensemble docking calculations using Arabidopsis CDKC;2 obtained by a homology modeling indicated that the different binding conformations between these molecules and CDKC;2 explain the divergent activities of TT539 and TT361.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación de la Expresión Génica de las Plantas , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo
6.
New Phytol ; 235(4): 1336-1343, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661165

RESUMEN

Circadian clocks regulate the diel rhythmic physiological activities of plants, enabling them to anticipate and adapt to day-night and seasonal changes. Genetic and biochemical approaches have suggested that transcription-translation feedback loops (TTFL) are crucial for Arabidopsis clock function. Recently, the study of chemical chronobiology has emerged as a discipline within the circadian clock field, with important and complementary discoveries from both plant and animal research. In this review, we introduce recent advances in chemical biology using small molecules to perturb plant circadian clock function through TTFL components. Studies using small molecule clock modulators have been instrumental for revealing the role of post-translational modification in the clock, or the metabolite-dependent clock input pathway, as well as for controlling clock-dependent flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Plantas/metabolismo
7.
Plant Physiol ; 190(2): 952-967, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35266545

RESUMEN

During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock's molecular functioning can facilitate molecular breeding in the future.


Asunto(s)
Arabidopsis , Hordeum , Oryza , Arabidopsis/genética , Productos Agrícolas/genética , Flores/genética , Hordeum/genética , Humanos , Oryza/genética , Pisum sativum/genética , Reguladores del Crecimiento de las Plantas , Triticum/genética
8.
Plant Cell Physiol ; 63(4): 450-462, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35086143

RESUMEN

The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Animales , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismo , Fosforilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
9.
Nat Commun ; 12(1): 864, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558539

RESUMEN

Circadian clocks allow organisms to synchronize their physiological processes to diurnal variations. A phase response curve allows researchers to understand clock entrainment by revealing how signals adjust clock genes differently according to the phase in which they are applied. Comprehensively investigating these curves is difficult, however, because of the cost of measuring them experimentally. Here we demonstrate that fundamental properties of the curve are recoverable from the singularity response, which is easily measured by applying a single stimulus to a cellular network in a desynchronized state (i.e. singularity). We show that the singularity response of Arabidopsis to light/dark and temperature stimuli depends on the properties of the phase response curve for these stimuli. The measured singularity responses not only allow the curves to be precisely reconstructed but also reveal organ-specific properties of the plant circadian clock. The method is not only simple and accurate, but also general and applicable to other coupled oscillator systems as long as the oscillators can be desynchronized. This simplified method may allow the entrainment properties of the circadian clock of both plants and other species in nature.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/fisiología , Arabidopsis/efectos de la radiación , Relojes Circadianos/efectos de la radiación , Luz , Especificidad de Órganos/efectos de la radiación , Temperatura
10.
Genes (Basel) ; 11(11)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138078

RESUMEN

The circadian clock is the biological timekeeping system that governs the approximately 24-h rhythms of genetic, metabolic, physiological and behavioral processes in most organisms. This oscillation allows organisms to anticipate and adapt to day-night changes in the environment. Molecular studies have indicated that a transcription-translation feedback loop (TTFL), consisting of transcriptional repressors and activators, is essential for clock function in Arabidopsis thaliana (Arabidopsis). Omics studies using next-generation sequencers have further revealed that transcription factors in the TTFL directly regulate key genes implicated in clock-output pathways. In this review, the target genes of the Arabidopsis clock-associated transcription factors are summarized. The Arabidopsis clock transcriptional network is partly conserved among angiosperms. In addition, the clock-dependent transcriptional network structure is discussed in the context of plant behaviors for adapting to day-night cycles.


Asunto(s)
Arabidopsis/genética , Relojes Circadianos/genética , Redes Reguladoras de Genes , Genes de Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Modelos Genéticos , Mutación , Plantas Modificadas Genéticamente , Transactivadores/genética , Factores de Transcripción/genética
11.
Biosci Biotechnol Biochem ; 84(5): 970-979, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31985350

RESUMEN

Plants flower under appropriate day-length conditions by integrating temporal information provided by the circadian clock with light and dark information from the environment. A sub-group of plant specific circadian clock-associated PSEUDO-RESPONSE REGULATOR (PRR) genes (PRR7/PRR3 sub-group) controls flowering time both in long-day and short-day plants; however, flowering control by the other two PRR gene sub-groups has been reported only in Arabidopsis thaliana (Arabidopsis), a model long-day plant. Here, we show that an Arabidopsis PRR9/PRR5 sub-group gene can control flowering time (heading date) in rice, a short-day plant. Although PRR5 promotes flowering in Arabidopsis, transgenic rice overexpressing Arabidopsis PRR5 caused late flowering. Such transgenic rice plants produced significantly higher biomass, but not grain yield, due to the late flowering. Concomitantly, expression of Hd3a, a rice florigen gene, was reduced in the transgenic rice.Abbreviations: CCT: CONSTANS, CONSTANS-LIKE, and TOC1; HD: HEADING DATE; LHY: LATE ELONGATED HYPOCOTYL; Ppd: photoperiod; PR: pseudo-receiver; PRR: PSEUDO-RESPONSE REGULATOR; TOC1: TIMING OF CAB EXPRESSION 1; ZTL: ZEITLUPE.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ritmo Circadiano/genética , Flores/crecimiento & desarrollo , Flores/genética , Oryza/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Relojes Circadianos/genética , Florigena/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Oryza/crecimiento & desarrollo , Fenotipo , Fotoperiodo , Filogenia , Plantas Modificadas Genéticamente
12.
Plant Direct ; 3(9): e00172, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31549020

RESUMEN

Casein kinase 1 (CK1) is an evolutionarily conserved protein kinase family among eukaryotes. Studies in non-plants have shown CK1-dependent divergent biological processes, but the collective knowledge regarding the biological roles of plant CK1 lags far behind other members of the Eukarya. One reason for this is that plants have many more genes encoding CK1 than do animals. To accelerate our understanding of the plant CK1 family, a strong CK1 inhibitor that efficiently inhibits multiple members of the CK1 protein family in vivo (i.e., in planta) is required. Here, we report a novel, specific, and effective CK1 inhibitor in Arabidopsis. Using circadian period-lengthening activity as an estimation of the CK1 inhibitor effect in vivo, we performed a structure-activity relationship study of analogues of the CK1 inhibitor PHA767491 (1,5,6,7-tetrahydro-2-(4-pyridinyl)-4H-pyrrolo[3,2-c]pyridin-4-one hydrochloride). A propargyl group at the pyrrole nitrogen atom (AMI-212) or a bromine atom at the pyrrole C3 position (AMI-23) had stronger CK1 inhibitory activity than PHA767491. A hybrid molecule of AMI-212 and AMI-23 (AMI-331) was about 100-fold more inhibitory than the parent molecule PHA767491. Affinity proteomics using an AMI-331 probe showed that the targets of AMI-331 inhibition are mostly CK1 kinases. As such, AMI-331 is a potent and selective CK1 inhibitor that shows promise in the research of CK1 in plants.

13.
Plant Cell Physiol ; 60(11): 2360-2368, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529098

RESUMEN

The circadian clock is a timekeeping system for regulation of numerous biological daily rhythms. One characteristic of the circadian clock is that period length remains relatively constant in spite of environmental fluctuations, such as temperature change. Here, using the curated collection of in-house small molecule chemical library (ITbM chemical library), we show that small molecule 3,4-dibromo-7-azaindole (B-AZ) lengthened the circadian period of Arabidopsis thaliana (Arabidopsis). B-AZ has not previously been reported to have any biological and biochemical activities. Target identification can elucidate the mode of action of small molecules, but we were unable to make a molecular probe of B-AZ for target identification. Instead, we performed other analysis, gene expression profiling that potentially reveals mode of action of molecules. Short-term treatment of B-AZ decreased the expression of four dawn- and morning-phased clock-associated genes, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7. Consistently, amounts of PRR5 and TIMING OF CAB EXPRESSION 1 (TOC1) proteins, transcriptional repressors of CCA1, LHY, PRR9 and PRR7 were increased upon B-AZ treatment. B-AZ inhibited Casein Kinase 1 family (CK1) that phosphorylates PRR5 and TOC1 for targeted degradation. A docking study and molecular dynamics simulation suggested that B-AZ interacts with the ATP-binding pocket of human CK1 delta, whose amino acid sequences are highly similar to those of Arabidopsis CK1. B-AZ-induced period-lengthening effect was attenuated in prr5 toc1 mutants. Collectively, this study provides a novel and simple structure CK1 inhibitor that modulates circadian clock via accumulation of PRR5 and TOC1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relojes Circadianos/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/genética
14.
Sci Rep ; 9(1): 10054, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332248

RESUMEN

Stomatal movements are regulated by many environmental signals, such as light, CO2, temperature, humidity, and drought. Recently, we showed that photoperiodic flowering components have positive effects on light-induced stomatal opening in Arabidopsis thaliana. In this study, we determined that light-induced stomatal opening and increased stomatal conductance were larger in plants grown under long-day (LD) conditions than in those grown under short-day (SD) conditions. Gene expression analyses using purified guard cell protoplasts revealed that FT and SOC1 expression levels were significantly increased under LD conditions. Interestingly, the enhancement of light-induced stomatal opening and increased SOC1 expression in guard cells due to LD conditions persisted for at least 1 week after plants were transferred to SD conditions. We then investigated histone modification using chromatin immunoprecipitation-PCR, and observed increased trimethylation of lysine 4 on histone 3 (H3K4) around SOC1. We also found that LD-dependent enhancement of light-induced stomatal opening and H3K4 trimethylation in SOC1 were suppressed in the ft-2 mutant. These results indicate that photoperiod is an important environmental cue regulating stomatal opening, and that LD conditions enhance light-induced stomatal opening and epigenetic modification (H3K4 trimethylation) around SOC1, a positive regulator of stomatal opening, in an FT-dependent manner. Thus, this study provides novel insights into stomatal responses to photoperiod.


Asunto(s)
Arabidopsis/genética , Arabidopsis/efectos de la radiación , Código de Histonas/efectos de la radiación , Fotoperiodo , Estomas de Plantas/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Metilación , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/efectos de la radiación , Protoplastos/metabolismo , Factores de Transcripción/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(23): 11528-11536, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31097584

RESUMEN

The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Quinasa de la Caseína I/genética , Relojes Circadianos/genética , Factores de Transcripción/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/genética , Fosforilación/genética , Procesamiento Proteico-Postraduccional/genética , Transcripción Genética/genética
16.
Sci Rep ; 9(1): 2983, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814643

RESUMEN

Circadian clocks regulate the daily timing of metabolic, physiological, and behavioral activities to adapt organisms to day-night cycles. In the model plant Arabidopsis thaliana, transcript-translational feedback loops (TTFL) constitute the circadian clock, which is conserved among flowering plants. Arabidopsis TTFL directly regulates key genes in the clock-output pathways, whereas the pathways for clock-output control in other plants is largely unknown. Here, we propose that the transcriptional networks of clock-associated pseudo-response regulators (PRRs) are conserved among flowering plants. Most PRR genes from Arabidopsis, poplar, and rice encode potential transcriptional repressors. The PRR5-target-like gene group includes genes that encode key transcription factors for flowering time regulation, cell elongation, and chloroplast gene expression. The 5'-upstream regions of PRR5-target-like genes from poplar and rice tend to contain G-box-like elements that are potentially recognized by PRRs in vivo as has been shown in Arabidopsis. Expression of PRR5-target-like genes from poplar and rice tends to decrease when PRRs are expressed, possibly suggesting that the transcriptional network of PRRs is evolutionarily conserved in these plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Magnoliopsida/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Oryza/genética , Populus/genética , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo
17.
Plant Cell Physiol ; 57(5): 1085-97, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27012548

RESUMEN

Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Biomasa , Sequías , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Luz , Fenotipo , Salinidad , Estrés Fisiológico , Factores de Transcripción/genética
18.
Plant Cell ; 28(3): 696-711, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26941090

RESUMEN

The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Hipocótilo/genética , Hipocótilo/fisiología , Mutación , Motivos de Nucleótidos , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética
19.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26069325

RESUMEN

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Asunto(s)
Arabidopsis/fisiología , Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas , Análisis por Micromatrices , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
20.
Plant Cell Physiol ; 56(4): 640-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25588388

RESUMEN

Stomatal movements are regulated by multiple environmental signals. Recent investigations indicate that photoperiodic flowering components, such as CRY, GI, CO, FT and TSF, are expressed in guard cells and positively affect stomatal opening in Arabidopsis thaliana. Here we show that SOC1, which encodes a MADS box transcription factor and integrates multiple flowering signals, also exerts a positive effect on stomatal opening. FLC encodes a potent repressor of FT and SOC1, and FRI acts as an activator of FLC. Thus, we examined stomatal phenotypes in FRI-Col, which contains an active FRI allele of accession Sf-2 by introgression. We found higher expression of FLC and lower expression of FT, SOC1 and TSF in guard cells from FRI-Col than in those from Col. Light-induced stomatal opening was significantly suppressed in FRI-Col. Interestingly, vernalization of FRI-Col partially restored light-induced stomatal opening, concomitant with a decrease of FLC and increase of FT, SOC1 and TSF. Furthermore, we observed the constitutive open-stomata phenotype in transgenic plants overexpressing SOC1-GFP (green fluorescent protein) in guard cells (SOC1-GFP overexpressor), and found that light-induced stomatal opening was significantly suppressed in a soc1 knockout mutant. RNA sequencing using epidermis from the SOC1-GFP overexpressor revealed that the expression levels of several genes involved in stomatal opening, such as BLUS1 and the plasma membrane H(+)-ATPases, were higher than those in background plants. From these results, we conclude that SOC1 is involved in the regulation of stomatal opening via transcriptional regulation in guard cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/metabolismo , Proteínas de Dominio MADS/metabolismo , Estomas de Plantas/fisiología , Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Luz , Mutación/genética , Fenotipo , Estomas de Plantas/citología , Estomas de Plantas/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA