Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927647

RESUMEN

Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits?


Asunto(s)
Tamaño del Genoma , Genoma de Planta , Sesamum , Sesamum/genética , Niger , Variación Genética , Semillas/genética
2.
Plants (Basel) ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931045

RESUMEN

While Moringa oleifera Lam. is gaining importance in Africa, especially sub-Saharan Africa, it is unclear whether research is following the quick pace of its development on the continent. Therefore, this article analyzes the landscape of research dealing with moringa in Africa. This systematic review draws upon 299 eligible articles identified through a search carried out on the Web of Science in April 2023. Research on M. oleifera is rather recent in Africa but interest is increasing among scholars. While the research field is multidisciplinary and cross-sectoral, the literature seems to focus on biological and environmental sciences. Moreover, research is performed mainly in South Africa, Nigeria, Egypt, and Ghana. The analysis suggests a significant potential contribution of moringa to food security and nutrition, climate change mitigation/adaptation, farming systems resilience, and livelihoods. Its versatility and diverse applications and uses make moringa particularly interesting for developing countries, such as African ones. However, this review also underscores some factors hindering its development. Therefore, there is a need to strengthen research on moringa to unlock its potential in Africa. Investments in research, innovation, and development can help address the many challenges that Africa faces and contribute to the transition towards sustainable and resilient food systems.

3.
PLoS One ; 15(3): e0230434, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32191750

RESUMEN

The population genetic structure of crop pest populations gives information about their spatial ecology, which helps in designing management strategies. In this paper, we investigated the genetic structure of the Mediterranean Corn Borer (MCB), Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), one of the most important maize pests in the Mediterranean countries, using microsatellite markers for the first time in this species. Insects were collected in twenty-five locations in southwest and southeast France from cultivated and wild host plants (Zea mays, Sorghum halepense and Typha domingensis). Contrary to what has been reported so far in France, we found that MCB populations could be locally abundant on wild poales plants. Analysis was carried out at 11 polymorphic microsatellite markers. Molecular variance was significantly determined by geography, then by host plant, with 17% and 4%, respectively, when considered as a major effect, and with 14% and 1%, respectively, when considered as a marginal effect in permutational analysis. Multidimensional scaling (MDS) and GENELAND Bayesian clustering suggested that populations infecting wild plants (T. domingensis and S. halepense) were more structured locally than those affecting cultivated maize. In S. halepense, significant Isolation By Distance (IBD) indicated that this factor could explain genetic differentiation of the moth populations. In T. domingensis, local population differentiation was strong but did not depend on distance. The implication of this absence of population structure in maize and the heterogeneity of population genetics patterns in wild plants are discussed in the context of the population dynamics hypothesis and population management strategies.


Asunto(s)
Agricultura , Genética de Población , Mariposas Nocturnas/genética , Zea mays/crecimiento & desarrollo , Zea mays/parasitología , Animales , Teorema de Bayes , Francia , Variación Genética , Geografía , Interacciones Huésped-Parásitos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA