Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
medRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39281760

RESUMEN

Background and aims: Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods: Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results: Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions: Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. HIGHLIGHTS: HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.

2.
Matrix Biol ; 133: 116-133, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39187208

RESUMEN

BACKGROUND: Metabolic syndrome and diabetes in obese individuals are strong risk factors for development of inflammatory bowel disease (IBD) and colorectal cancer. The pathogenic mechanisms of low-grade metabolic inflammation, including chronic hyperglycemic stress, in disrupting gut homeostasis are poorly understood. In this study, we sought to understand the impact of a hyperglycemic environment on intestinal barrier integrity and the protective effects of small molecular weight (35 kDa) hyaluronan on epithelial barrier function. METHODS: Intestinal organoids derived from mouse colon were grown in normal glucose media (5 mM) or high glucose media (25 mM) to study the impact of hyperglycemic stress on the intestinal barrier. Additionally, organoids were pretreated with 35 kDa hyaluronan (HA35) to investigate the effect of hyaluronan on epithelial barrier under high glucose stress. Immunoblotting as well as confocal imaging was used to understand changes in barrier proteins, quantitative as well as spatial distribution, respectively. Alterations in barrier function were measured using trans-epithelial electrical resistance and fluorescein isothiocyanate flux assays. Untargeted proteomics analysis was performed to elucidate mechanisms by which HA35 exerts a protective effect on the barrier. Intestinal organoids derived from receptor knockout mice specific to various HA receptors were utilized to understand the role of HA receptors in barrier protection under high glucose conditions. RESULTS: We found that high glucose stress decreased the protein expression as well as spatial distribution of two key barrier proteins, zona occludens-1 (ZO-1) and occludin. HA35 prevented the degradation or loss of ZO-1 and maintained the spatial distribution of both ZO-1 and occludin under hyperglycemic stress. Functionally, we also observed a protective effect of HA35 on the epithelial barrier under high glucose conditions. We found that HA receptor, layilin, was involved in preventing barrier protein loss (ZO-1) as well as maintaining spatial distribution of ZO-1 and occludin. Additionally, proteomics analysis showed that cell death and survival was the primary pathway upregulated in organoids treated with HA35 under high glucose stress. We found that XIAP associated factor 1 (Xaf1) was modulated by HA35 thereby regulating apoptotic cell death in the intestinal organoid system. Finally, we observed that spatial organization of both focal adhesion kinase (FAK) as well as F-actin was mediated by HA35 via layilin. CONCLUSION: Our results highlight the impact of hyperglycemic stress on the intestinal barrier function. This is of clinical relevance, as impaired barrier function has been observed in individuals with metabolic syndrome. Additionally, we demonstrate barrier protective effects of HA35 through its receptor layilin and modulation of cellular apoptosis under high glucose stress.


Asunto(s)
Glucosa , Ácido Hialurónico , Mucosa Intestinal , Organoides , Animales , Organoides/metabolismo , Ratones , Ácido Hialurónico/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Glucosa/metabolismo , Hiperglucemia/metabolismo , Colon/metabolismo , Colon/patología , Colon/efectos de los fármacos , Humanos , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
3.
Hepatology ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058584

RESUMEN

BACKGROUND AND AIMS: Alcohol-associated hepatitis (AH) is a clinically severe, acute disease that afflicts only a fraction of patients with alcohol use disorder (AUD). Genomic studies of alcohol-associated cirrhosis (AC) have identified several genes of large effect, but the genetic and environmental factors that lead to AH and AC, and their degree of genetic overlap, remain largely unknown. This study aims to identify genes and genetic variation that contribute to the development of AH. APPROACH AND RESULTS: Exome-sequencing of patients with AH (N=784) and heavy drinking controls (N=951) identified exome-wide significant association for AH at PNPLA3, as previously observed for AC in GWAS, although with a much lower effect-size. SNPs of large effect-size at ICOSLG (Chr 21) and TOX4/RAB2B (Chr 14), were also exome-wide significant. ICOSLG encodes a co-stimulatory signal for T-cell proliferation and cytokine secretion and induces B-cell proliferation and differentiation. TOX4 was previously implicated in diabetes and immune system function. Other genes previously implicated in AC did not strongly contribute to AH, and the only prominently implicated (but not exome wide significant) gene overlapping with AUD was ADH1B. Polygenic signals for AH were observed in both common and rare variant analysis and identified genes with roles associated with inflammation. CONCLUSIONS: This study has identified two new genes of high effect size with a previously unknown contribution to ALD, and highlights both the overlap in etiology between liver diseases, and the unique origins of AH.

4.
Hepatology ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028887

RESUMEN

BACKGROUND AND AIMS: In a recent trial, patients with severe alcohol-associated hepatitis treated with anakinra plus zinc (A+Z) had lower survival and higher acute kidney injury (AKI) rates versus prednisone (PRED). We characterize the clinical factors and potential mechanisms associated with AKI development in that trial. APPROACH AND RESULTS: Data from 147 participants in a multicenter randomized clinical trial (74 A+Z, 73 PRED) were analyzed. AKI, AKI phenotypes, and kidney injury biomarkers were compared between participants who did/did not develop AKI in the 2 treatment arms. Multivariable competing risk analyses were performed to identify baseline risk factors for incident AKI, with death treated as a competing event. Risk factors considered were age, sex, mean arterial pressure, white blood cell count, albumin, MELD, ascites, HE, and treatment arm. At baseline, no participants had AKI; 33% (n=49) developed AKI during follow-up. AKI incidence was higher in A+Z than in PRED (45% [n=33] versus 22% [n=16], p =0.001). AKI phenotypes were similar between the 2 treatment arms ( p =0.361), but peak AKI severity was greater in A+Z than PRED (stage 3 n=21 [63.6%] vs. n=8 [50.0%], p =0.035). At baseline, urine-neutrophil-gelatinase-associated lipocalin levels were similar between participants who developed AKI in both treatment arms ( p =0.319). However, day 7 and 14 urine-neutrophil-gelatinase-associated lipocalin levels were significantly elevated in participants treated with A+Z who developed AKI versus participants treated with PRED who developed AKI ( p =0.002 and 0.032, respectively). On multivariable competing risk analysis, only A+Z was independently associated with incident AKI (subdistribution hazard ratio 2.35, p =0.005). CONCLUSIONS: AKI occurred more frequently and was more severe in participants treated with A+Z. A+Z-treated participants with AKI had higher urine-neutrophil-gelatinase-associated lipocalin, suggesting that A+Z maybe nephrotoxic in patients with severe alcohol-associated hepatitis.

5.
Nat Rev Gastroenterol Hepatol ; 21(9): 626-645, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38849555

RESUMEN

Most patients with alcohol-associated liver disease (ALD) engage in heavy drinking defined as 4 or more drinks per day (56 g) or 8 (112 g) or more drinks per week for women and 5 or more drinks per day (70 g) or 15 (210 g) or more drinks per week for men. Although abstinence from alcohol after diagnosis of ALD improves life expectancy and reduces the risk of decompensation of liver disease, few studies have evaluated whether treatment of alcohol use disorders will reduce progression of liver disease and improve liver-related outcomes. In November 2021, the National Institute of Alcohol Abuse and Alcoholism commissioned a task force that included hepatologists, addiction medicine specialists, statisticians, clinical trialists and members of regulatory agencies to develop recommendations for the design and conduct of clinical trials to evaluate the effect of alcohol use, particularly treatment to reduce or eliminate alcohol use in patients with ALD. The task force conducted extensive reviews of relevant literature on alcohol use disorders and ALD. Findings were presented at one in-person meeting and discussed over the next 16 months to develop the final recommendations. As few clinical trials directly address this topic, the 28 recommendations approved by all members of the task force represent a consensus of expert opinions.


Asunto(s)
Consumo de Bebidas Alcohólicas , Ensayos Clínicos como Asunto , Hepatopatías Alcohólicas , Humanos , Hepatopatías Alcohólicas/terapia , Consumo de Bebidas Alcohólicas/efectos adversos , Consenso , Proyectos de Investigación , Alcoholismo/complicaciones , Alcoholismo/terapia
7.
Hepatol Commun ; 8(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727677

RESUMEN

BACKGROUND: Polygenic Risk Scores (PRS) based on results from genome-wide association studies offer the prospect of risk stratification for many common and complex diseases. We developed a PRS for alcohol-associated cirrhosis by comparing single-nucleotide polymorphisms among patients with alcohol-associated cirrhosis (ALC) versus drinkers who did not have evidence of liver fibrosis/cirrhosis. METHODS: Using a data-driven approach, a PRS for ALC was generated using a meta-genome-wide association study of ALC (N=4305) and an independent cohort of heavy drinkers with ALC and without significant liver disease (N=3037). It was validated in 2 additional independent cohorts from the UK Biobank with diagnosed ALC (N=467) and high-risk drinking controls (N=8981) and participants in the Indiana Biobank Liver cohort with alcohol-associated liver disease (N=121) and controls without liver disease (N=3239). RESULTS: A 20-single-nucleotide polymorphisms PRS for ALC (PRSALC) was generated that stratified risk for ALC comparing the top and bottom deciles of PRS in the 2 validation cohorts (ORs: 2.83 [95% CI: 1.82 -4.39] in UK Biobank; 4.40 [1.56 -12.44] in Indiana Biobank Liver cohort). Furthermore, PRSALC improved the prediction of ALC risk when added to the models of clinically known predictors of ALC risk. It also stratified the risk for metabolic dysfunction -associated steatotic liver disease -cirrhosis (3.94 [2.23 -6.95]) in the Indiana Biobank Liver cohort -based exploratory analysis. CONCLUSIONS: PRSALC incorporates 20 single-nucleotide polymorphisms, predicts increased risk for ALC, and improves risk stratification for ALC compared with the models that only include clinical risk factors. This new score has the potential for early detection of heavy drinking patients who are at high risk for ALC.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cirrosis Hepática Alcohólica , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Población Blanca , Humanos , Cirrosis Hepática Alcohólica/genética , Masculino , Femenino , Persona de Mediana Edad , Población Blanca/genética , Anciano , Medición de Riesgo , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Adulto , Factores de Riesgo , Predisposición Genética a la Enfermedad , Reino Unido , Puntuación de Riesgo Genético
8.
Hepatology ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691396

RESUMEN

The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.

9.
Elife ; 122024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648183

RESUMEN

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.


Asunto(s)
Aciltransferasas , Homeostasis , Metabolismo de los Lípidos , Hepatopatías Alcohólicas , Lisosomas , Proteínas de la Membrana , Animales , Humanos , Masculino , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/genética , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
10.
JCI Insight ; 9(9)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573776

RESUMEN

Diagnostic challenges continue to impede development of effective therapies for successful management of alcohol-associated hepatitis (AH), creating an unmet need to identify noninvasive biomarkers for AH. In murine models, complement contributes to ethanol-induced liver injury. Therefore, we hypothesized that complement proteins could be rational diagnostic/prognostic biomarkers in AH. Here, we performed a comparative analysis of data derived from human hepatic and serum proteome to identify and characterize complement protein signatures in severe AH (sAH). The quantity of multiple complement proteins was perturbed in liver and serum proteome of patients with sAH. Multiple complement proteins differentiated patients with sAH from those with alcohol cirrhosis (AC) or alcohol use disorder (AUD) and healthy controls (HCs). Serum collectin 11 and C1q binding protein were strongly associated with sAH and exhibited good discriminatory performance among patients with sAH, AC, or AUD and HCs. Furthermore, complement component receptor 1-like protein was negatively associated with pro-inflammatory cytokines. Additionally, lower serum MBL associated serine protease 1 and coagulation factor II independently predicted 90-day mortality. In summary, meta-analysis of proteomic profiles from liver and circulation revealed complement protein signatures of sAH, highlighting a complex perturbation of complement and identifying potential diagnostic and prognostic biomarkers for patients with sAH.


Asunto(s)
Biomarcadores , Proteínas del Sistema Complemento , Hepatitis Alcohólica , Proteómica , Humanos , Hepatitis Alcohólica/sangre , Hepatitis Alcohólica/mortalidad , Hepatitis Alcohólica/diagnóstico , Proteómica/métodos , Masculino , Femenino , Proteínas del Sistema Complemento/metabolismo , Biomarcadores/sangre , Persona de Mediana Edad , Adulto , Hígado/metabolismo , Hígado/patología , Alcoholismo/sangre , Alcoholismo/complicaciones , Proteoma/metabolismo , Pronóstico , Anciano
11.
Int J Neonatal Screen ; 10(2)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38651394

RESUMEN

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a rare genetic condition affecting the mitochondrial beta-oxidation of long-chain fatty acids. This study reports on the clinical outcomes of patients diagnosed by newborn screening with VLCAD deficiency comparing metabolic parameters, enzyme activities, molecular results, and clinical management. It is a single-center retrospective chart review of VLCAD deficiency patients who met the inclusion criteria between January 2002 and February 2020. The study included 12 patients, 7 of whom had an enzyme activity of more than 10%, and 5 patients had an enzyme activity of less than 10%. The Pearson correlation between enzyme activity and the C14:1 level at newborn screening showed a p-value of 0.0003, and the correlation between enzyme activity and the C14:1 level at diagnosis had a p-value of 0.0295. There was no clear correlation between the number of documented admissions and the enzyme activity level. Patients who had a high C14:1 value at diagnosis were started on a diet with a lower percentage of energy from long-chain triglycerides. The C14:1 result at diagnosis is the value that has been guiding our initial clinical management in asymptomatic diagnosed newborns. However, the newborn screening C14:1 value is the most sensitive predictor of low enzyme activity and may help guide dietary management.

12.
J Clin Psychol ; 80(6): 1365-1376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401145

RESUMEN

Nonsuicidal self-injury (NSSI) is theorized to be caused by negative associations with the self, including low self-esteem, but the mechanisms explaining why low self-esteem is related to more severe NSSI are unclear. The current study aimed to address this limitation by evaluating a mediation model, proposing that low self-esteem would relate to more severe NSSI through increasing self-punishment motivations. Data came from 468 undergraduate students with a history of NSSI who completed an online survey measuring NSSI characteristics and functions, self-esteem, and self-punishment motivations for NSSI. Mediation was tested using a structural equation model using bootstrapped 95% percentile-corrected confidence intervals in which NSSI severity was modeled as a latent variable composed of NSSI frequency, recency, and versatility of methods. The total model was significant and the indirect effect of self-esteem on NSSI severity through self-punishment motives was significant. Self-esteem also retained significant direct effects on NSSI severity, indicating partial mediation. These results provide support for the benefits and barriers model of NSSI, suggesting that negative self-views increase risk for more severe NSSI through self-punishment motivations. Clinical interventions that emphasize self-compassion and focus on modifying self-punishment motivations may help reduce NSSI behavior.


Asunto(s)
Autoimagen , Conducta Autodestructiva , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Conducta Autodestructiva/psicología , Adolescente , Modelos Psicológicos , Motivación , Castigo/psicología , Estudiantes/psicología , Índice de Severidad de la Enfermedad
13.
J Hepatol ; 80(5): 684-693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342441

RESUMEN

BACKGROUND & AIMS: Severe alcohol-associated hepatitis (SAH) is associated with high 90-day mortality. Glucocorticoid therapy for 28 days improves 30- but not 90-day survival. We assessed the efficacy and safety of a combination of anakinra, an IL-1 antagonist, plus zinc (A+Z) compared to prednisone using the Day-7 Lille score as a stopping rule in patients with SAH. METHODS: In this phase IIb double-blind randomized trial in adults with SAH and MELD scores of 20-35, participants were randomized to receive either daily anakinra 100 mg subcutaneously for 14 days plus daily zinc sulfate 220 mg orally for 90 days, or daily prednisone 40 mg orally for 30 days. Prednisone or prednisone placebo was stopped if Day-7 Lille score was >0.45. All study drugs were stopped for uncontrolled infection or ≥5 point increase in MELD score. The primary endpoint was overall survival at 90 days. RESULTS: Seventy-three participants were randomized to prednisone and 74 to A+Z. The trial was stopped early after a prespecified interim analysis showed prednisone was associated with higher 90-day overall survival (90% vs. 70%; hazard ratio for death = 0.34, 95% CI 0.14-0.83, p = 0.018) and transplant-free survival (88% vs. 64%; hazard ratio for transplant or death = 0.30, 95% CI 0.13-0.69, p = 0.004) than A+Z. Acute kidney injury was more frequent with A+Z (45%) than prednisone (22%) (p = 0.001), but rates of infection were similar (31% in A+Z vs. 27% in prednisone, p = 0.389). CONCLUSIONS: Participants with SAH treated with prednisone using the Day-7 Lille score as a stopping rule had significantly higher overall and transplant-free 90-day survival and lower incidence of acute kidney injury than those treated with A+Z. IMPACT AND IMPLICATIONS: There is no approved treatment for severe alcohol-associated hepatitis (SAH). In this double-blind randomized trial, patients with SAH treated with prednisone using the Lille stopping rule on Day 7 had higher 90-day overall and transplant-free survival and lower rates of acute kidney injury compared to patients treated with a combination of anakinra and zinc. The data support continued use of glucocorticoids for patients with SAH, with treatment discontinuation for those with a Lille score >0.45 on Day 7. TRIAL REGISTRATION: NCT04072822.


Asunto(s)
Lesión Renal Aguda , Hepatitis Alcohólica , Adulto , Humanos , Prednisona/efectos adversos , Proteína Antagonista del Receptor de Interleucina 1/efectos adversos , Zinc/uso terapéutico , Hepatitis Alcohólica/tratamiento farmacológico , Método Doble Ciego , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Resultado del Tratamiento
14.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216926

RESUMEN

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Evaluación de Resultado en la Atención de Salud , Niño , Humanos , Acil-CoA Deshidrogenasa , Canadá , Estudios Prospectivos , Preescolar
15.
Life Sci ; 340: 122451, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38253311

RESUMEN

AIMS: Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS: Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS: We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE: Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hepatopatías Alcohólicas , Ratones , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Etanol/toxicidad , Estrés Oxidativo , Inflamación
16.
EMBO Mol Med ; 16(2): 219-237, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195700

RESUMEN

Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.


Asunto(s)
Hepatopatías , Enfermedades Metabólicas , Humanos , Necroptosis , Proteínas Quinasas/metabolismo , Muerte Celular , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Necrosis/patología
17.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37808828

RESUMEN

Several recent genome-wide association studies (GWAS) have identified single nucleotide polymorphism (SNPs) near the gene encoding membrane-bound O -acyltransferase 7 ( MBOAT7 ) that is associated with advanced liver diseases. In fact, a common MBOAT7 variant (rs641738), which is associated with reduced MBOAT7 expression, confers increased susceptibility to non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis in those chronically infected with hepatitis viruses B and C. The MBOAT7 gene encodes a lysophosphatidylinositol (LPI) acyltransferase enzyme that produces the most abundant form of phosphatidylinositol 38:4 (PI 18:0/20:4). Although these recent genetic studies clearly implicate MBOAT7 function in liver disease progression, the mechanism(s) by which MBOAT7-driven LPI acylation regulates liver disease is currently unknown. Previously we showed that antisense oligonucleotide (ASO)-mediated knockdown of Mboat7 promoted non-alcoholic fatty liver disease (NAFLD) in mice (Helsley et al., 2019). Here, we provide mechanistic insights into how MBOAT7 loss of function promotes alcohol-associated liver disease (ALD). In agreement with GWAS studies, we find that circulating levels of metabolic product of MBOAT7 (PI 38:4) are significantly reduced in heavy drinkers compared to age-matched healthy controls. Hepatocyte specific genetic deletion ( Mboat7 HSKO ), but not myeloid-specific deletion ( Mboat7 MSKO ), of Mboat7 in mice results in enhanced ethanol-induced hepatic steatosis and high concentrations of plasma alanine aminotransferase (ALT). Given MBOAT7 is a lipid metabolic enzyme, we performed comprehensive lipidomic profiling of the liver and identified a striking reorganization of the hepatic lipidome upon ethanol feeding in Mboat7 HSKO mice. Specifically, we observed large increases in the levels of endosomal/lysosomal lipids including bis(monoacylglycero)phosphates (BMP) and phosphatidylglycerols (PGs) in ethanol-exposed Mboat7 HSKO mice. In parallel, ethanol-fed Mboat7 HSKO mice exhibited marked dysregulation of autophagic flux and lysosomal biogenesis when exposed to ethanol. This was associated with impaired transcription factor EB (TFEB)-mediated lysosomal biogenesis and accumulation of autophagosomes. Collectively, this works provides new molecular insights into how genetic variation in MBOAT7 impacts ALD progression in humans and mice. This work is the first to causally link MBOAT7 loss of function in hepatocytes, but not myeloid cells, to ethanol-induced liver injury via dysregulation of lysosomal biogenesis and autophagic flux.

18.
Am J Gastroenterol ; 119(1): 107-115, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011138

RESUMEN

INTRODUCTION: This study is to evaluate the safety and pharmacokinetics (PK) of larsucosterol (DUR-928 or 25HC3S) in subjects with alcohol-associated hepatitis (AH), a devastating acute illness without US Food and Drug Administration-approved therapies. METHODS: This phase 2a, multicenter, open-label, dose escalation study evaluated the safety, PK, and efficacy signals of larsucosterol in 19 clinically diagnosed subjects with AH. Based on the model for end-stage liver disease (MELD) score, 7 subjects were considered to have moderate AH and 12 to have severe AH. All subjects received 1 or 2 intravenous infusions (72 hours apart) of larsucosterol at a dose of 30, 90, or 150 mg and were followed up for 28 days. Efficacy signals from a subgroup of subjects with severe AH were compared with those from 2 matched arms of those with severe AH treated with standard of care (SOC), including corticosteroids, from a contemporaneous study. RESULTS: All 19 larsucosterol-treated subjects survived the 28-day study. Fourteen (74%) of all subjects including 8 (67%) of the subjects with severe AH were discharged ≤72 hours after receiving a single infusion. There were no drug-related serious adverse events nor early terminations due to the treatment. PK profiles were not affected by disease severity. Biochemical parameters improved in most subjects. Serum bilirubin levels declined notably from baseline to day 7 and day 28, and MELD scores were reduced at day 28. The efficacy signals compared favorably with those from 2 matched groups treated with SOC. Lille scores at day 7 were <0.45 in 16 of the 18 (89%) subjects with day 7 samples. Lille scores from 8 subjects with severe AH who received 30 or 90 mg larsucosterol (doses used in phase 2b trial) were statistically significantly lower ( P < 0.01) than those from subjects with severe AH treated with SOC from the contemporaneous study. DISCUSSION: Larsucosterol was well tolerated at all 3 doses in subjects with AH without safety concerns. Data from this pilot study showed promising efficacy signals in subjects with AH. Larsucosterol is being evaluated in a phase 2b multicenter, randomized, double-blinded, placebo-controlled (AHFIRM) trial.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Hepatitis Alcohólica , Humanos , Proyectos Piloto , Índice de Severidad de la Enfermedad , Hepatitis Alcohólica/tratamiento farmacológico , Hepatitis Alcohólica/diagnóstico
19.
Hepatology ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37796138

RESUMEN

Excessive alcohol use is a major risk factor for the development of an alcohol use disorder (AUD) and contributes to a wide variety of other medical illnesses, including alcohol-associated liver disease (ALD). Both AUD and ALD are complex and causally interrelated diseases, and multiple factors other than alcohol consumption are implicated in the disease pathogenesis. While the underlying pathophysiology of AUD and ALD is complex, there is substantial evidence for a genetic susceptibility of both diseases. Current genome-wide association studies indicate that the genes associated with clinical AUD only poorly overlap with the genes identified for heavy drinking and, in turn, neither overlap with the genes identified for ALD. Uncovering the main genetic factors will enable us to identify molecular drivers underlying the pathogenesis, discover potential targets for therapy, and implement patient care early in disease progression. In this review, we described multiple genomic approaches and their implications to investigate the susceptibility and pathogenesis of both AUD and ALD. We concluded our review with a discussion of the knowledge gaps and future research on genomic studies in these 2 diseases.

20.
Hepatol Commun ; 7(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820283

RESUMEN

BACKGROUND: Chronic alcohol consumption impairs gut barrier function and perturbs the gut microbiome. Although shifts in bacterial communities in patients with alcohol-associated liver disease (ALD) have been characterized, less is known about the interactions between host metabolism and circulating microbe-derived metabolites during the progression of ALD. METHODS: A large panel of gut microbiome-derived metabolites of aromatic amino acids was quantified by stable isotope dilution liquid chromatography with online tandem mass spectrometry in plasma from healthy controls (n = 29), heavy drinkers (n = 10), patients with moderate (n = 16) or severe alcohol-associated hepatitis (n = 40), and alcohol-associated cirrhosis (n = 10). RESULTS: The tryptophan metabolites, serotonin and indole-3-propionic acid, and tyrosine metabolites, p-cresol sulfate, and p-cresol glucuronide, were decreased in patients with ALD. Patients with severe alcohol-associated hepatitis and alcohol-associated cirrhosis had the largest decrease in concentrations of tryptophan and tyrosine-derived metabolites compared to healthy control. Western blot analysis and interrogation of bulk RNA sequencing data from patients with various liver pathologies revealed perturbations in hepatic expression of phase II metabolism enzymes involved in sulfonation and glucuronidation in patients with severe forms of ALD. CONCLUSIONS: We identified several metabolites decreased in ALD and disruptions of hepatic phase II metabolism. These results indicate that patients with more advanced stages of ALD, including severe alcohol-associated hepatitis and alcohol-associated cirrhosis, had complex perturbations in metabolite concentrations that likely reflect both changes in the composition of the gut microbiome community and the ability of the host to enzymatically modify the gut-derived metabolites.


Asunto(s)
Aminoácidos Aromáticos , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Hígado , Humanos , Aminoácidos Aromáticos/metabolismo , Hepatitis/metabolismo , Hepatitis/fisiopatología , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/fisiopatología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/fisiopatología , Triptófano/metabolismo , Tirosina , Microbioma Gastrointestinal/fisiología , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/fisiopatología , Hígado/metabolismo , Hígado/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA