Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Pharm Bull ; 14(2): 400-411, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39206394

RESUMEN

The study examines the induction of apoptosis in colon cancer stem cells (CCSCs) within a 3D culture setting, employing an innovative cold atmospheric plasma (CAP) transmission method known as two-stage transferred cold atmospheric plasma (TS-TCAP). TS-TCAP is a partially or fully ionized non-thermal gaseous mixture that comprises photons, charged and neutral particles, and free radicals, which has gained traction in biomedical applications such as cancer therapy. TS-TCAP impacts CCSCs via a continuous, two-step transport process, facilitating the efficient delivery of reactive oxygen and nitrogen species (RONS). The key cellular factors of CCSCs impacted by TS-TCAP treatment, encompassing the secretion and expression levels of IL-6 and IL-8, apoptotic cell count, and expression of BAX, BCL-2, and KI-67 proteins, were evaluated using qrt-ELISA, Annexin V, and qrt-PCR procedures, respectively. The outcomes of CCSCs treatment with TS-TCAP reveal a notable rise in the number of apoptotic cells (P<0.0001), diminished secretion, and gene expression of IL-6 and IL-8 (P<0.0001), accompanied by favorable alterations in BCL-2 and BAX gene expression (P<0.0001). Additionally, a notable decrease in KI-67 expression was observed, correlating with a reduction in CCSCs proliferation (P<0.0001). As well, this study underscores the anti-cancer potential of TS-TCAP, showcasing its efficacy in reducing CCSCs survival rates. However, further pre-clinical and clinical trials are necessary to evaluate CAP's efficacy, safety, and potential synergistic effects with other therapies thoroughly. Overall, TS-TCAP presents a promising alternative for CCSCs treatment, pending further investigation and refinement.

2.
Sci Rep ; 14(1): 3165, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326373

RESUMEN

Compositions of ZnO nanoparticles and polyaniline, in the form of emeraldine salt, were manufactured as thin layers by using the spin-coating method. Then, the effect of polyaniline content on their photoelectrochemical characteristics was studied. Results indicate that all the samples are sensitive to light. Besides, with 0.30% of PANI, the composite sample demonstrates the highest photocurrent density; also, its photocurrent increment starts to increase at a voltage of ⁓ 1.23 V (vs. RHE), which is approximately in accordance with the theoretical potential of water electrolysis. Furthermore, since the rate of electron-hole recombination in this composite sample is the lowest, it possesses the highest photoelectrochemical efficiency. Main findings were analyzed with respect to UV-visible absorption and photoluminescence spectra as well as SEM micrographs of the samples and Raman spectral measurements. Besides, electrochemical impedance spectroscopy analysis was applied to both pure ZnO and the sample with the best response. Effects of drying temperature and layer thickness were also investigated.

3.
Mikrochim Acta ; 188(7): 238, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34184115

RESUMEN

A novel immunoassay is introduced based on co-reactant enhancing strategy for the electrochemiluminescent (ECL) determination of CA15-3 and CA72-4 tumor markers in real samples. For the preparation of the signaling probe, CA15-3 and CA72-4 antibodies first were labeled using Ru(bpy)32+-N-hydroxysuccinimide ester (Ru(bpy)32+-NHS) and conjugated with L-cysteine capped cadmium selenide (CdSe) quantum dots. Finally, it was cross-linked with chitosan-grafted graphene oxide (GO@CS) nanocomposite. The capture probe was constructed by deposition of multi-walled carbon nanotubes (MWCNT) at the surface of dual-working gold screen-printed electrodes (MWCNT-dwSPE) and covalent attachment of capture CA15-3 and CA72-4 antibodies to MWCNT-dwSPE. ECL signals were recorded by applying cyclic potential ranging from 0.3 to 1.1 V (vs. pseudo-reference Ag/AgCl) at the scan rate of 100 mV.s-1. This immunoassay was used for determination of CA15-3 and CA72-4 in real samples the detection limits of 9.2 µU.ml-1 and 89 µU.ml-1 within linear ranges of 10 µU.ml-1-500 U.ml-1 and 100 µU.ml-1-150 U.ml-1, respectively. This immunoassay also showed acceptable accuracy with recoveries in the range 96.5-108 % and high reproducibility with RSD of 3.1 and 4.9.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Grafito/química , Inmunoensayo/métodos , Nanocompuestos/química , Puntos Cuánticos/química , Compuestos de Selenio/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA