Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Proc SPIE Int Soc Opt Eng ; 92152014 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26236070

RESUMEN

We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

3.
Proc SPIE Int Soc Opt Eng ; 9214: 92140D, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-26146444

RESUMEN

A 1650 µm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 µm-thickness columnar CsI(Tl) scintillator, the 1650 µm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.

4.
J Phys Conf Ser ; 425(9)2013.
Artículo en Inglés | MEDLINE | ID: mdl-24489595

RESUMEN

There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 µm, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline.

5.
Proc SPIE Int Soc Opt Eng ; 85082012 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26346514

RESUMEN

We present recent progress in BazookaSPECT, a high-resolution, photon-counting gamma-ray detector. It is a new class of scintillation detector that combines columnar scintillators, image intensifiers, and CCD (charge-coupled device) or CMOS (complementary metal-oxide semiconductors) sensors for high-resolution imaging. A key feature of the BazookaSPECT paradigm is the capability to easily design custom detectors in terms of the desired intrinsic detector resolution and event detection rate. This capability is possible because scintillation light is optically amplified by the image intensifier prior to being imaging onto the CCD/CMOS sensor, thereby allowing practically any consumer-grade CCD/CMOS sensor to be used for gamma-ray imaging. Recent efforts have been made to increase the detector area by incorporating fiber-optic tapers between the scintillator and image intensifier, resulting in a 16× increase in detector area. These large-area BazookaSPECT detectors can be used for full-body imaging and we present preliminary results of their use as dynamic scintigraphy imagers for mice and rats. Also, we discuss ongoing and future developments in BazookaSPECT and the improved event-detection rate capability that is achieved using Graphics Processing Units (GPUs), multi-core processors, and new high-speed, USB 3.0 CMOS cameras.

6.
IEEE Trans Nucl Sci ; 58(3): 634-638, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21731108

RESUMEN

Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

7.
IEEE Nucl Sci Symp Conf Rec (1997) ; Oct. 24 2009-Nov. 1 2009: 4004-4008, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21218137

RESUMEN

FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer's and Parkinsons's disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented.

8.
IEEE Trans Nucl Sci ; 56(3): 565-570, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20617107

RESUMEN

Microcolumnar CsI:Tl remains a highly desirable sensor for digital X-ray imaging due to its superior spatial resolution, bright emission, high absorption efficiency, and ready availability. Despite such obvious advantages, two characteristic properties of CsI:Tl undermine their use in clinical and high speed imaging: a persistent afterglow in its scintillation decay, and a hysteresis effect that distorts the scintillation yield after exposure to high radiation doses.In our earlier work we have discovered that the addition of 0.05 to 0.5 mol percent of Sm(2+) to crystals of CsI:Tl suppresses their afterglow by a factor of up to 50, even when subjected to a very high exposure of 120 R. This additive also diminishes hysteresis by an order of magnitude, which is a major accomplishment. Consequent- ly, our work is now focused on developing codoped microcolumnar CsI:Tl, Sm films that can potentially combine excellent properties of the current state-of-the-art CsI:Tl films with the reduced afterglow and hysteresis observed in codoped crystals. While our earlier attempts in CsI:Tl, Sm film fabrication, reported at the previous IEEE meeting, demonstrated obvious advantages of the approach, the recent work has succeeded in producing films that show improvement by at least a factor of 7 in afterglow and 150% in brightness compared to the standard CsI:Tl films. We report these important results in this paper, along with other recent advances in film growth and new imaging results.

9.
Nucl Instrum Methods Phys Res A ; 576(1): 38-42, 2007 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18997878

RESUMEN

Third generation synchrotron sources such as the Advanced Photon Source at Argonne National Laboratory, Argonne, IL, are outstanding tools for X-ray diffraction and scattering studies of non-crystalline biological materials. However, these studies are hindered by the lack of adequate detectors that can provide multiple frames of detailed structural information on the required millisecond time scale at the extremely high count rates available at the APS. RMD is developing a cost effective detector for time-resolved small angle X-ray scattering, using a cooled, 512x512 pixel electron multiplying CCD (EMCCD). This paper describes the detector design, its efficacy for time-resolved SAXS studies, and its imaging performance with frame rates of 30 to 500 fps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA