Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 413: 131481, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277054

RESUMEN

Bioaugmentation regimes (i.e., dosage, repetition, and timing) in AD must be optimized to ensure their effectiveness. Although previous studies have investigated these aspects, most have focused exclusively on short-term effects, with some reporting conflicting conclusions. Here, AD experiments of three consecutive repeated batches were conducted to determine the effect of bioaugmentation regimes under ammonium/salt inhibition conditions. A positive correlation between reactor performance and inoculum dosage was confirmed in the first batch, which diminished in subsequent batches for both inhibitors. Moreover, a diminishing marginal effect was observed with repeated inoculum introduction. While the bacterial community largely influenced the reactor performance, the archaeal community exhibited only a minor impact. Prediction of the key enzyme abundances suggested an overall decline in different AD steps. Overall, repeated batch experiments revealed that a homogeneous bacterial community deteriorated the AD process during long-term operation. Thus, a balanced bacterial community is key for efficient methane production.

2.
Bioresour Technol ; 376: 128853, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898569

RESUMEN

Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.


Asunto(s)
Compuestos de Amonio , Consorcios Microbianos , Reactores Biológicos , Anaerobiosis , Cloruro de Sodio/farmacología , Metano , Sedimentos Geológicos , Estrés Salino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA