Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20242024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043627

RESUMEN

Targeted gene panel sequencing is used to limit the search for causative genetic variants solely to genes with an established association with the phenotype. The design of gene panels is challenging due to the lack of consensus regarding phenotypic associations for some genes, which results in high variation in gene composition for the same panel offered by different laboratories. We developed PANGEN, a platform that provides a centralized resource for gene panel information, with the ability to compare and generate new intelligent diagnostic panels. Gene-phenotype associations were collected from 12 public and commercial sources (Blueprint, Cegat, Centogene, ClinGen, Fulgent, GeneDx, Health in Code, Human Phenotype Ontology, Invitae, PanelApp, Prevention genetics, and Pronto diagnostics). Gene-phenotype associations are categorized into tiers according to categories derived from the original source panel. Pairwise panel similarity was calculated by dividing the number of common genes by the total number of genes in both panels. Regions with extreme guanine-cytosine (GC) content were collected from the Genome in a Bottle stratifications dataset, and putative genomic duplications were retrieved from the University of Santa Cruz database. Overall, 1533 panels, 9759 phenotypes, and 6979 genes were collected. The platform provides an interface to (i) explore and compare collected panels, (ii) find similar panels, (iii) identify genes with high GC content or duplication levels, (iv) generate gene panels by combining panels from various sources, and (v) stratify a generated panel into genes with a strong phenotype association ('core') and those with a weaker association ('extended'). The presented platform represents a unique resource for gene panel exploration and comparison that facilitates the generation of tailored diagnostic panels through a public online web server. Database URL: https://c-gc.shinyapps.io/PANGEN/.


Asunto(s)
Bases de Datos Genéticas , Humanos , Internet , Fenotipo , Estudios de Asociación Genética
2.
Genes (Basel) ; 15(3)2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540414

RESUMEN

POT1 (Protection of Telomeres 1) is a key component of the six-membered shelterin complex that plays a critical role in telomere protection and length regulation. Germline variants in the POT1 gene have been implicated in predisposition to cancer, primarily to melanoma and chronic lymphocytic leukemia (CLL). We report the identification of POT1 p.(I78T), previously ranked with conflicting interpretations of pathogenicity, as a founder pathogenic variant among Ashkenazi Jews (AJs) and describe its unique clinical landscape. A directed database search was conducted for individuals referred for genetic counselling from 2018 to 2023. Demographic, clinical, genetic, and pathological data were collected and analyzed. Eleven carriers, 25 to 67 years old, from ten apparently unrelated families were identified. Carriers had a total of 30 primary malignancies (range 1-6); nine carriers (82%) had recurrent melanoma between the ages of 25 and 63 years, three carriers (27%) had desmoid tumors, three (27%) had papillary thyroid cancer (PTC), and five women (63% of female carriers) had breast cancer between the ages of 44 and 67 years. Additional tumors included CLL; sarcomas; endocrine tumors; prostate, urinary, and colorectal cancers; and colonic polyps. A review of a local exome database yielded an allelic frequency of the variant of 0.06% among all ethnicities and of 0.25% in AJs. A shared haplotype was found in all carriers tested. POT1 p.(I78T) is a founder disease-causing variant associated with early-onset melanoma and additional various solid malignancies with a high tumor burden. We advocate testing for this variant in high-risk patients of AJ descent. The inclusion of POT1 in germline panels for various types of cancer is warranted.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Melanoma , Neoplasias Cutáneas , Neoplasias de la Tiroides , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Melanoma/genética , Leucemia Linfocítica Crónica de Células B/genética , Proteínas de Unión a Telómeros/genética , Neoplasias Cutáneas/genética , Complejo Shelterina
3.
J Assist Reprod Genet ; 30(5): 633-48, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595898

RESUMEN

INTRODUCTION: In order to investigate the dynamics of genomic alterations that occur at different developmental stages in vitro, we examined the chromosome content of human preimplantation embryos by molecular-cytogenetic techniques at the single-cell level, up to 13 days post fertilization. METHODS: The embryos were genetically analyzed several times during their development in culture; each embryo was first analyzed by FISH at 'Day 3' post fertilization, than during its growth in vitro and the third analysis was performed at development arrest, then the entire blastocyst was analyzed by comparative genomic hybridization (CGH/aCGH). RESULTS: We found that while on 'Day 3' only 31% of the embryos were detected as normal, on 'Day 5-6', 44% of the embryos were classified as normal and on 'Day 7', 57% were normal. On 'Days 8-13', 52% of the embryos were classified as chromosomally normal. One third of the embryos that were chromosomally abnormal on 'Day 3', were found to be normal at development arrest point. DISCUSSION: These dynamic changes that occur at early developmental stages suggest that testing a single blastomere at 'Day 3' post fertilization for PGD might inaccurately reflect the embryo ploidy and increase the risk of false aneuploidy diagnosis. Alternatively, blastocyst stage diagnosis may be more appropriate.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Aberraciones Cromosómicas/embriología , Fertilización In Vitro , Fertilización/fisiología , Inestabilidad Genómica/fisiología , Adulto , Células Cultivadas , Aberraciones Cromosómicas/estadística & datos numéricos , Fase de Segmentación del Huevo/metabolismo , Fase de Segmentación del Huevo/fisiología , Hibridación Genómica Comparativa , Análisis Citogenético , Femenino , Edad Gestacional , Humanos , Hibridación Fluorescente in Situ , Diagnóstico Preimplantación/métodos , Factores de Tiempo
4.
Eur J Hum Genet ; 20(12): 1248-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22713809

RESUMEN

Pluripotency and proliferative capacity of human embryonic stem cells (hESCs) make them a promising source for basic and applied research as well as in therapeutic medicine. The introduction of human induced pluripotent cells (hiPSCs) holds great promise for patient-tailored regenerative medicine therapies. However, for hESCs and hiPSCs to be applied for therapeutic purposes, long-term genomic stability in culture must be maintained. Until recently, G-banding analysis was considered as the default approach for detecting chromosomal abnormalities in stem cells. Our goal in this study was to apply fluorescence in-situ hybridization (FISH) and comparative genomic hybridization (CGH) for the screening of pluripotent stem cells, which will enable us identifying chromosomal abnormalities in stem cells genome with a better resolution. We studied three hESC lines and two hiPSC lines over long-term culture. Aneuploidy rates were evaluated at different passages, using FISH probes (12,13,16,17,18,21,X,Y). Genomic integrity was shown to be maintained at early passages of hESCs and hiPSCs but, at late passages, we observed low rates mosaiciam in hESCs, which implies a direct correlation between number of passages and increased aneuploidy rate. In addition, CGH analysis revealed a recurrent genomic instability, involving the gain of chromosome 1q. This finding was detected in two unrelated cell lines of different origin and implies that gains of chromosome 1q may endow a clonal advantage in culture. These findings, which could only partially be detected by conventional cytogenetic methods, emphasize the importance of using molecular cytogenetic methods for tracking genomic instability in stem cells.


Asunto(s)
Aneuploidia , Duplicación Cromosómica/genética , Cromosomas Humanos Par 1/genética , Mosaicismo , Células Madre Pluripotentes , Línea Celular , Hibridación Genómica Comparativa , Inestabilidad Genómica/genética , Humanos , Hibridación Fluorescente in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA