Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 263: 116571, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047650

RESUMEN

Periprosthetic infection is one of the most devastating complications following orthopaedic surgery. Rapid detection of an infection can change the treatment pathway and improve outcomes for the patient. In here, we propose a miniaturized lactate biosensor developed on a flexible substrate and integrated on a small-form bone implant to detect infection. The methods for lactate biosensor fabrication and integration on a bone implant are fully described within this study. The system performance was comprehensively electrochemically characterised, including with L-lactate solutions prepared in phosphate-buffered saline and culture medium, and interferents such as acetaminophen and ascorbic acid. A proof-of-concept demonstration was then conducted with ex vivo ovine femoral heads incubated with and without exposure to Staphylococcus epidermidis. The sensitivity, current density and limit-of-detection levels achieved by the biosensor were 1.25 µA mM-1, 1.51 µA.M-1.mm-2 and 66 µM, respectively. The system was insensitive to acetaminophen, while sensitivity to ascorbic acid was half that of the sensitivity to L-lactate. In the ex vivo bone model, S. epidermidis infection was detected within 5 h of implantation, while the control sample led to no change in the sensor readings. This pioneering work demonstrates a pathway to improving orthopaedic outcomes by enabling early infection diagnosis.


Asunto(s)
Técnicas Biosensibles , Ácido Láctico , Infecciones Estafilocócicas , Staphylococcus epidermidis , Infección de la Herida Quirúrgica , Técnicas Biosensibles/métodos , Animales , Staphylococcus epidermidis/aislamiento & purificación , Ovinos , Infecciones Estafilocócicas/diagnóstico , Infección de la Herida Quirúrgica/diagnóstico , Ácido Láctico/análisis , Ácido Láctico/química , Humanos , Tecnología Inalámbrica , Prótesis e Implantes , Diseño de Equipo , Infecciones Relacionadas con Prótesis , Enzimas Inmovilizadas/química , Ortopedia , Oxigenasas de Función Mixta
2.
Biomed J ; 46(3): 100540, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35640805

RESUMEN

BACKGROUND: Among orthopedic surgery materials, poly (methyl methacrylate) (PMMA) is most commonly used for its excellent mechanical properties and rapid self-setting time. However, PMMA bone cement has been reported to cause thermal necrosis and to have poor bioactivity, which must be improved. In contrast, tricalcium silicate (TCS), the most significant component of Portland Cement and the most effective bone cement material, might not always meet the needs of the cement due to its poor mechanical properties and elevated pH levels during hydration. We hypothesize that the benefits of both PMMA and TCS can be harnessed by mixing them together in different proportions. This would represent a better solution for the issues faced when using them alone. METHODS: We, therefore, prepared a novel organic-inorganic PMMA/TCS composite bone cement mixing PMMA and different amounts of TCS and tested its effect on the biophysical properties. RESULTS: The addition of 30% TCS reduced the exothermic temperature and pH variation during cement setting and hydration processes. However, the mechanical and handling properties of the bioactive PMMA/TCS composite were not affected. The in vitro study also revealed that the composite materials had higher cell viability than pure PMMA and TCS. Also, the in vivo study on animals indicated that the composite materials were more capable of forming bone, which further reinforced the biocompatibility of the proposed PMMA/TCS bone cement. CONCLUSION: By combining the advantages of each component, it could be possible to construct a more effective composite bone cement material. This would meet the needs of implantation material for orthopedic surgeries or a possible bone filler.


Asunto(s)
Cementos para Huesos , Polimetil Metacrilato , Animales , Polimetil Metacrilato/farmacología , Polimetil Metacrilato/química , Cementos para Huesos/farmacología , Cementos para Huesos/química , Ensayo de Materiales , Compuestos de Calcio/farmacología , Compuestos de Calcio/química
3.
Biomater Res ; 26(1): 21, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642070

RESUMEN

BACKGROUND: All types of movements involve the role of articular cartilage and bones. The presence of cartilage enables bones to move over one another smoothly. However, repetitive microtrauma and ischemia as well as genetic effects can cause an osteochondral lesion. Numerous treatment methods such as microfracture surgergy, autograft, and allograft, have been used, however, it possesses treatment challenges including prolonged recovery time after surgery and poses a financial burden on patients. Nowadays, various tissue engineering approaches have been developed to repair bone and osteochondral defects using biomaterial implants to induce the regeneration of stem cells.  METHODS: In this study, a collagen (Col)/γ-polyglutamate acid (PGA)/hydroxyapatite (HA) composite scaffold was fabricated using a 3D printing technique. A Col/γ-PGA/HA 2D membrane was also fabricated for comparison. The scaffolds (four layers) were designed with the size of 8 mm in diameter and 1.2 mm in thickness. The first layer was HA/γ-PGA and the second to fourth layers were Col/γ-PGA. In addition, a 2D membrane was constructed from hydroxyapatite/γ-PGA and collagen/γ-PGA with a ratio of 1:3. The biocompatibility property and degradation activity were investigated for both scaffold and membrane samples. Rat bone marrow mesenchymal stem cells (rBMSCs) and human adipose-derived stem cells (hADSCs) were cultured on the samples and were tested in-vitro to evaluate cell attachment, proliferation, and differentiation. In-vivo experiments were performed in the rat and nude mice models. RESULTS: In-vitro and in-vivo results show that the developed scaffold is of well biodegradation and biocompatible properties, and the Col-HA scaffold enhances the mechanical properties for osteochondrogenesis in both in-vitro and animal trials. CONCLUSIONS: The composite would be a great biomaterial application for bone and osteochondral regeneration.

4.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34578024

RESUMEN

Articular cartilage defects affect millions of people worldwide, including children, adolescents, and adults. Progressive wear and tear of articular cartilage can lead to progressive tissue loss, further exposing the bony ends and leaving them unprotected, which may ultimately cause osteoarthritis (degenerative joint disease). Unlike other self-repairing tissues, cartilage has a low regenerative capacity; once injured, the cartilage is much more difficult to heal. Consequently, developing methods to repair this defect remains a challenge in clinical practice. In recent years, tissue engineering applications have employed the use of three-dimensional (3D) porous scaffolds for growing cells to regenerate damaged cartilage. However, these scaffolds are mainly chemically synthesized polymers or are crosslinked using organic solvents. Utilizing 3D printing technologies to prepare biodegradable natural composite scaffolds could replace chemically synthesized polymers with more natural polymers or low-toxicity crosslinkers. In this study, collagen/oligomeric proanthocyanidin/oxidized hyaluronic acid composite scaffolds showing high biocompatibility and excellent mechanical properties were prepared. The compressive strengths of the scaffolds were between 0.25-0.55 MPa. Cell viability of the 3D scaffolds reached up to 90%, which indicates that they are favorable surfaces for the deposition of apatite. An in vivo test was performed using the Sprague Dawley (SD) rat skull model. Histological images revealed signs of angiogenesis and new bone formation. Therefore, 3D collagen-based scaffolds can be used as potential candidates for articular cartilage repair.

5.
Nanoscale Res Lett ; 14(1): 189, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31165287

RESUMEN

Cortisol, a steroid hormone, is secreted by the hypothalamic-pituitary-adrenal system. It is a well-known biomarker of psychological stress and is hence known as the "stress hormone." If cortisol overexpression is prolonged and repeated, dysfunction in the regulation of cortisol eventually occurs. Therefore, a rapid point-of-care assay to detect cortisol is needed. Salivary cortisol electrochemical analysis is a non-invasive method that is potentially useful in enabling rapid measurement of cortisol levels. In this study, multilayer films containing two-dimensional tin disulfide nanoflakes, cortisol antibody (C-Mab), and bovine serum albumin (BSA) were prepared on glassy carbon electrodes (GCE) as BSA/C-Mab/SnS2/GCE, and characterized using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochemical responses of the biosensor as a function of cortisol concentrations were determined using cyclic voltammetry and differential pulse voltammetry. This cortisol biosensor exhibited a detection range from 100 pM to 100 µM, a detection limit of 100 pM, and a sensitivity of 0.0103 mA/Mcm2 (R2 = 0.9979). Finally, cortisol concentrations in authentic saliva samples obtained using the developed electrochemical system correlated well with results obtained using enzyme-linked immunosorbent assays. This biosensor was successfully prepared and used for the electrochemical detection of salivary cortisol over physiological ranges, based on the specificity of antibody-antigen interactions.

6.
J Biomed Nanotechnol ; 14(4): 725-735, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31352946

RESUMEN

Bacterial infection in wounds or implants can cause osteomyelitis, eventually leading to orthopedic implant failure. In this study, polyelectrolyte multilayer (PEM) coating comprising collagen as the cationic layer, chitosan as the barrier layer and γ-poly-glutamic acid as the anionic layer were fabricated onto a 316L stainless steel substrate by spin coating technique. Tetracycline-loaded 57S mesoporous bioactive glass nanoparticles (57S MBG, SiO2:CaO:P2O5 = 57:33:10 by wt%) were introduced into the γ-poly-glutamic acid layers. Herein, 57S MBG nanoparticles were successfully incorporated into the PEMs with a total thickness of ∼53 µm on 316L stainless steel (SS-PEMs-57S), which exhibited good hydrophilicity with a contact angle of 18.71°. The hardness of SS-PEMs-57S was 0.66 GPa while the Young's modulus was 11.5 GPa; these values are similar to those for the cortical bone. The surface roughness of MBG nanoparticle-incorporated PEMs increased from 231 to 384 nm. Controlled release of tetracycline loaded in MBG nanoparticles resulted in sustained antibacterial effect for up to 7 days, with higher release efficacy at low pH, which may be induced by inflammation or infection. Tetracycline loaded in SS-PEMs-57S showed good bacterial inhibition and maintained good cell viability in rat bone marrow mesenchymal stem cells (BMSCs) in the MTT assay. Moreover, SS-PEMs-57S also promoted mineralization of BMSCs. Therefore, this surface modification technology has great potential for endowing orthopedic implants with antibacterial and osteoconductive properties.


Asunto(s)
Nanopartículas , Polielectrolitos , Animales , Antibacterianos , Ratas , Dióxido de Silicio , Acero Inoxidable , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA