Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 263: 113981, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38805837

RESUMEN

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the sample under investigation share common elements and overlap spatially. In this paper, we present a methodology to identify, segment, and unmix phases with a substantial spectral and spatial overlap in a semi-automated fashion through combining non-negative matrix factorization with a priori knowledge of the sample. We illustrate the methodology using a sample taken from an electron beam-sensitive mineral assemblage representing Earth's deep mantle. With it, we retrieve the true EDX spectra of the constituent phases and their corresponding phase abundance maps. It further enables us to achieve a reliable quantification for trace elements having concentration levels of ∼100 ppm. Our approach can be adapted to aid the analysis of many materials systems that produce STEM-EDXS datasets having phase overlap and/or limited signal-to-noise ratio (SNR) in spatially-integrated spectra.

2.
Geophys Res Lett ; 48(12): e2021GL092446, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34219835

RESUMEN

We carried out a series of silicate fractional crystallization experiments at lower mantle pressures using the laser-heated diamond anvil cell. Phase relations and the compositional evolution of the cotectic melt and equilibrium solids along the liquid line of descent were determined and used to assemble the melting phase diagram. In a pyrolitic magma ocean, the first mineral to crystallize in the deep mantle is iron-depleted calcium-bearing bridgmanite. From the phase diagram, we estimate that the initial 33%-36% of the magma ocean will crystallize to form such a buoyant bridgmanite. Substantial calcium solubility in bridgmanite is observed up to 129 GPa, and significantly delays the crystallization of the calcium silicate perovskite phase during magma ocean solidification. Residual melts are strongly iron-enriched as crystallization proceeds, making them denser than any of the coexisting solids at deep mantle conditions, thus supporting the terrestrial basal magma ocean hypothesis (Labrosse et al., 2007).

3.
Nat Commun ; 9(1): 1327, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666368

RESUMEN

Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

4.
Proc Natl Acad Sci U S A ; 113(40): 11127-11130, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647917

RESUMEN

We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth's lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth's mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D" layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA