Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 15(2): 3295-3308, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33522794

RESUMEN

MXenes, as an emerging class of 2D materials, display distinctive physical and chemical properties, which are highly suitable for high-power battery applications, such as lithium ion batteries (LIBs). Ti3C2Tx (Tx = O, OH, F, Cl) is one of the most investigated MXenes to this day; however, most scientific research studies only focus on the design of multilayered or monolayer MXenes. Here, we present a comprehensive study on the synthesis of few-layered Ti3C2Tx materials and their use in LIB cells, in particular for high-rate applications. The synthesized Ti3C2Tx MXenes are characterized via complementary XRD, Raman spectroscopy, XPS, EDX, SEM, TGA, and nitrogen adsorption techniques to clarify the structural and chemical changes, especially regarding the surface groups and intercalated cations/water molecules. The structural changes are correlated with respect to the acidic and basic post-treatment of Ti3C2Tx. Furthermore, the detected alterations are put into an electrochemical perspective via galvanostatic and potentiostatic investigations to study the pseudocapacitive behavior of few-layered Ti3C2Tx, exhibiting a stable capacity of 155 mAh g-1 for 1000 cycles at 5 A g-1. The acidic treatment of Ti3C2Tx synthesized via the in situ formation of HF through LiF/HCl is able to increase the initial capacity in comparison to the pristine or basic treatment. To gain further insights into the structural changes occurring during (de)lithiation, in situ XRD is applied for LIB cells in a voltage range from 0.01 to 3 V to give fundamental mechanistic insights into the structural changes occurring during the first cycles. Thereby, the increased initial capacity observed for acidic-treated MXenes can be explained by the reduced co-intercalation of solvent molecules.

2.
ACS Appl Mater Interfaces ; 11(20): 18404-18414, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31046233

RESUMEN

Ni-rich NCM-based positive electrode materials exhibit appealing properties in terms of high energy density and low cost. However, these materials suffer from different degradation effects, especially at their particle surface. Therefore, in this work, tungsten oxide is evaluated as a protective inorganic coating layer on LiNi0.8Co0.1Mn0.1O2 (NCM-811) positive electrode materials for lithium-ion battery (LIB) cells and investigated regarding rate capability and cycling stability under different operation conditions. Using electrochemical impedance spectroscopy, the interfacial resistance of uncoated and coated NCM-811 electrodes is explored to study the impact of the coating on lithium-ion diffusion. All electrochemical investigations are carried out in LIB full cells with graphite as a negative electrode to ensure better comparability with commercial cells. The coated electrodes show an excellent capacity retention for the long-term charge/discharge cycling of NCM-811-based LIB full cells, i.e., 80% state-of-health after more than 800 cycles. Furthermore, the positive influence of the tungsten oxide coating on the thermal and structural stability is demonstrated using postmortem analysis of aged electrodes. Compared to the uncoated electrodes, the surface-modified electrodes show less degradation effects, such as particle cracking on the electrode surface and improvement of the thermal stability of NCM-811 in the presence of electrolyte.

3.
ACS Appl Mater Interfaces ; 10(33): 28187-28198, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30044617

RESUMEN

Due to its high specific and volumetric capacity and relatively low operation potential, silicon (Si) has attracted much attention to be utilized as a high-capacity anode material for lithium-ion batteries (LIBs) with increased energy density. However, the application of Si within commercial LIBs is still hindered by its poor cycling stability related to the huge volume changes of Si upon lithiation/delithiation, followed by continuous electrolyte decomposition and active lithium loss at the anode side. In this work, we present the application of pentafluorophenyl isocyanate (PFPI) as an effective electrolyte additive for lithium-ion full cells, containing a pure, magnetron-sputtered Si anode and a LiNi1/3Mn1/3Co1/3O2 (NMC-111) cathode. The performance of the Si/NMC-111 full cells is significantly improved in terms of capacity retention and Coulombic efficiency by the addition of 2 wt % PFPI to the baseline electrolyte and is compared to the well-known additives vinylene carbonate and fluoroethylene carbonate. Furthermore, it is revealed that the additive is able to reduce the active lithium losses by forming an effective solid-electrolyte interphase (SEI) on the Si anode. X-ray photoelectron spectroscopy investigations unveil that PFPI is a main part of the SEI layer, leading to less active lithium immobilized within the interphase. Overall, our results pave the path for a broad range of different isocyanate compounds, which have not been studied for Si-based anodes in lithium-ion full cells so far. These compounds can be easily adjusted by modifying the chemical structure and/or functional groups incorporated within the molecule, to specifically tailor the SEI layer for Si-based anodes in LIBs.

4.
ACS Nano ; 11(5): 4731-4744, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28437078

RESUMEN

The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA