Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 31(7): 074004, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30524116

RESUMEN

The charge transport through GaAs nanowires, partially p-doped and partially intrinsic, is analyzed by four-point resistance profiling along freestanding nanowires using a multip-STM. The charge transport channel in the undoped segment is assigned to the surface conductivity, while the interior of the nanowire is the conductance channel in the p-doped segment. The convoluted interplay between conduction through the interior of the nanowire and surface state conduction is studied in detail. Measurements of the I-V curves along the nanowires provide the experimental basis for the proposed charge transport model for the transition of the conduction from the interior to the surface of the nanowire. A voltage drop along the surface state conduction channel leads to an upward shift of the band edges at the surface. This results, for higher applied voltages, in the removal of the depletion layer and an opening of a conductance channel between the interior of the nanowire and the surface states.

2.
J Phys Condens Matter ; 29(39): 394007, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28714857

RESUMEN

The detection of doping dependent values like contact- and path resistances along nanowires (NWs) still proves to be rather challenging compared to planar structures. Unfortunately, the usually used and well established TLM (transmission line measurement) setup exhibits some drawbacks. Complex preliminary preparation steps and the necessity of ohmic contacts limit the investigation to certain semiconductor materials. The simultaneous determination of contact- and path resistances with an unknown distribution makes an analysis on complex structures like tapered nanowires very challenging. Our approach is the utilization of a multi-tip scanning tunneling microscope (MT-STM) as a four point prober, which allows the investigation of freestanding nanowires with an increased spatial resolution. Here, the used measurement setup allows a local separation of current injection and potential measurement and thus a highly precise determination of path resistances. Tapered p-doped GaAs-NWs were used to compare both techniques. Whereas the evaluation of the axial doping profile by MT-STM was rather simple, correction factors had to be introduced for the TLM measurement to calculate the specific resistances and transfer length. By comparing the results of both methods for the very same NW-sample, the precision and accuracy of MT-STM measurements was demonstrated. We found an agreement, which allows the conclusion that both methods exhibit advantages; however the MT-STM was determined as the more precise setup, which enables additional characterization capabilities, such as surface, temperature or light dependent measurements.

3.
J Phys Chem Lett ; 6(3): 464-9, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26261964

RESUMEN

Though III-V/Si(100) heterointerfaces are essential for future epitaxial high-performance devices, their atomic structure is an open historical question. Benchmarking of transient optical in situ spectroscopy during chemical vapor deposition to chemical analysis by X-ray photoelectron spectroscopy enables us to distinguish between formation of surfaces and of the heterointerface. A terrace-related optical anisotropy signal evolves during pulsed GaP nucleation on single-domain Si(100) surfaces. This dielectric anisotropy agrees well with the one calculated for buried GaP/Si(100) interfaces from differently thick GaP epilayers. X-ray photoelectron spectroscopy reveals a chemically shifted contribution of the P and Si emission lines, which quantitatively corresponds to one monolayer and establishes simultaneously with the nucleation-related optical in situ signal. We attribute that contribution to the existence of Si-P bonds at the buried heterointerface. During further pulsing and annealing in phosphorus ambient, dielectric anisotropies known from atomically well-ordered GaP(100) surfaces superimpose the nucleation-related optical in situ spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA