Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273484

RESUMEN

Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM-1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice.


Asunto(s)
Modelos Animales de Enfermedad , Hipercolesterolemia , Ratones Noqueados , Receptor Cannabinoide CB1 , Receptores de LDL , Vasodilatación , Animales , Hipercolesterolemia/metabolismo , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiencia , Vasodilatación/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/etiología , Remodelación Vascular/efectos de los fármacos , Ratones Endogámicos C57BL , Acetilcolina/farmacología
2.
Angiology ; : 33197241256680, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839285

RESUMEN

Substantial advances occurred in phlebological practice in the last two decades. With the use of modern diagnostic equipment, the patients' venous hemodynamics can be examined in detail in everyday practice. Application of venous segments for arterial bypasses motivated studies on the effect of hemodynamic load on the venous wall. New animal models have been developed to study hemodynamic effects on the venous system. In vivo and in vitro studies revealed cellular phase transitions of venous endothelial, smooth muscle, and fibroblastic cells and changes in connective tissue composition, under hemodynamic load and at different locations of the chronically diseased venous system. This review is an attempt to integrate our knowledge from epidemiology, paleoanthropology and anthropology, clinical and experimental hemodynamic studies, histology, cell physiology, cell pathology, and molecular biology on the complex pathomechanism of this frequent disease. Our conclusion is that the disease is initiated by limited genetic adaptation of mankind not to bipedalism but to bipedalism in the unmoving standing or sitting position. In the course of the disease several pathologic vicious circles emerge, sustained venous hypertension inducing cellular phase transitions, chronic wall inflammation, apoptosis of cells, pathologic dilation, and valvular damage which, in turn, further aggravate the venous hypertension.

3.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068901

RESUMEN

The negative cardiovascular effects of polycystic ovary syndrome (PCOS) and vitamin D deficiency (VDD) have been discussed previously; however, the sex differences between PCOS females and males are not yet known. Our aim was to investigate the effect of PCOS and VDD in the carotid artery of male and female Wistar rats. Females were treated with transdermal testosterone (Androgel) for 8 weeks, which caused PCOS. VDD and vitamin D supplementation were accomplished via diet. The carotid arteries' contraction and relaxation were examined using myography. Receptor density was investigated using immunohistochemistry. In PCOS females, angiotensin receptor density, angiotensin II-induced contraction, androgen receptor optical density, and testosterone-induced relaxation increased. The increased contractile response may increase cardiovascular vulnerability in women with PCOS. As an effect of VDD, estrogen receptor density increased in all our groups, which probably compensated for the reduced relaxation caused by VDD. Testosterone-induced relaxation was decreased as a result of VDD in males and non-PCOS females, whereas this reduction was absent in PCOS females. Male sex is associated with increased contraction ability compared with non-PCOS and PCOS females. VDD and Androgel treatment show significant gender differences in their effects on carotid artery reactivity. Both VDD and PCOS result in a dysfunctional vascular response, which can contribute to cardiovascular diseases.


Asunto(s)
Síndrome del Ovario Poliquístico , Deficiencia de Vitamina D , Humanos , Ratas , Animales , Femenino , Masculino , Vitamina D , Síndrome del Ovario Poliquístico/complicaciones , Testosterona/farmacología , Ratas Wistar , Vitaminas , Deficiencia de Vitamina D/complicaciones , Arterias Carótidas
4.
Biomedicines ; 11(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002004

RESUMEN

Angiotensin II (Ang II) is a hormone with much more complex actions than is typical for other agonists with heterotrimeric G protein-coupled receptors (GPCRs) [...].

5.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003619

RESUMEN

Both the endocannabinoid system (ECS) and estrogens have significant roles in cardiovascular control processes. Cannabinoid type 1 receptors (CB1Rs) mediate acute vasodilator and hypotensive effects, although their role in cardiovascular pathological conditions is still controversial. Estrogens exert cardiovascular protection in females. We aimed to study the impact of ECS on vascular functions. Experiments were performed on CB1R knockout (CB1R KO) and wild-type (WT) female mice. Plasma estrogen metabolite levels were determined. Abdominal aortas were isolated for myography and histology. Vascular effects of phenylephrine (Phe), angiotensin II, acetylcholine (Ach) and estradiol (E2) were obtained and repeated with inhibitors of nitric oxide synthase (NOS, Nω-nitro-L-arginine) and of cyclooxygenase (COX, indomethacin). Histological stainings (hematoxylin-eosin, resorcin-fuchsin) and immunostainings for endothelial NOS (eNOS), COX-2, estrogen receptors (ER-α, ER-ß) were performed. Conjugated E2 levels were higher in CB1R KO compared to WT mice. Vasorelaxation responses to Ach and E2 were increased in CB1R KO mice, attenuated by NOS-inhibition. COX-inhibition decreased Phe-contractions, while it increased Ach-relaxation in the WT group but not in the CB1R KO. Effects of indomethacin on E2-relaxation in CB1R KO became opposite to that observed in WT. Histology revealed lower intima/media thickness and COX-2 density, higher eNOS and lower ER-ß density in CB1R KO than in WT mice. CB1R KO female mice are characterized by increased vasorelaxation associated with increased utilization of endothelial NO and a decreased impact of constrictor prostanoids. Our results indicate that the absence or inhibition of CB1Rs may have beneficial vascular effects.


Asunto(s)
Receptores de Cannabinoides , Remodelación Vascular , Animales , Femenino , Ratones , Acetilcolina/metabolismo , Aorta Abdominal/metabolismo , Ciclooxigenasa 2/metabolismo , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Indometacina/farmacología , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores de Cannabinoides/metabolismo , Vasodilatación
6.
Life (Basel) ; 13(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36983932

RESUMEN

Blood flow increases in arteries of the skeletal muscles involved in active work. Our aim was to investigate the gender differences as a result of adaptation to sport in the femoral arteries. Vascular reactivity and histology of animals were compared following a 12-week swimming training. Animals were divided into sedentary male (MS), trained male (MTr), sedentary female (FS), and trained female (FTr) groups. Isolated femoral artery rings were examined by wire myography. Contraction induced by phenylephrine (Phe) did not differ between the four groups. The contractile ability in the presence of indomethacin (INDO) was decreased in both sedentary groups. However, we found a specific cyclooxygenase-2 (COX-2) role only in FS rats. After exercise training, we observed increased vasoconstriction in both sexes, when nitro-L-arginine methyl ester (L-NAME) was present. The COX-dependent vasoconstriction effect disappeared in MTr animals, and the COX-2-dependent vasoconstriction effect disappeared in FTr ones. Relaxation was reduced significantly, when L-NAME was present in MTr animals compared to in FTr rats. The training was associated with greater endothelial nitric oxide synthase (eNOS) protein expression in males, but not in females. The present study proves that there are gender differences regarding adaptation mechanisms of musculocutaneous arteries to sports training. In males, relaxation reserve capacity was markedly elevated compared to in females.

7.
Biomedicines ; 11(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36830844

RESUMEN

Metabolic syndrome is a complex disease state, which appears mostly as a consequence of an unhealthy, sedentary lifestyle. Metabolic complications include insulin resistance (IR), diabetes, dyslipidemia, hypertension, and atherosclerosis, impairing life standards and reducing life expectancy. The endocannabinoid system (ECS) has an important role in signalization processes, not only in the central nervous system, but also in the peripheral tissues. Several physiological functions are affected, and overexpression or downregulation contributes to several diseases. A better understanding of the functions of cannabinoid (CB) receptors may propose potential therapeutic effects by influencing receptor signaling and enzymes involved in downstream pathways. In this review, we summarize recent information regarding the roles of the ECS and the CB1 receptor signaling in the physiology and pathophysiology of energy and metabolic homeostasis, in the development of obesity by enhancing food intake, upregulating energy balance and fat accumulation, increasing lipogenesis and glucose production, and impairing insulin sensitivity and secretion. By analyzing the roles of the ECS in physiological and pathophysiological mechanisms, we introduce some recently identified signaling pathways in the mechanism of the pathogenesis of metabolic syndrome. Our review emphasizes that the presence of such recently identified ECS signaling steps raises new therapeutic potential in the treatment of complex metabolic diseases such as diabetes, insulin resistance, obesity, and hypertension.

8.
Rev Cardiovasc Med ; 24(1): 6, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39076867

RESUMEN

Background: Geometrical alterations in the coronary resistance artery network and the potential involvement of Tenascin C (TNC) extracellular matrix protein were investigated in diabetic and control mice. Methods: Diabetes was induced by streptozotocin (STZ) injections (n = 7-11 animals in each group) in Tenascin C KO (TNC KO) mice and their Wild type (A/J) littermates. After 16-18 weeks the heart was removed and the whole subsurface network of the left coronary artery was prepared (down to branches of 40 µ m outer diameter), in situ pressure-perfused and studied using video-microscopy. Outer and inner diameters, wall thicknesses and bifurcation angles were measured on whole network pictures reconstructed into collages at 1.7 µ m pixel resolutions. Results: Diabetes induced abnormal morphological alterations including trifurcations, sharp bends of larger branches, and branches directed retrogradely (p < 0.001 by the χ 2 test). Networks of TNC KO mice tended to form early divisions producing parallelly running larger branches (p < 0.001 by the χ 2 probe). Networks of coronary resistance arteries were substantially more abundant in 100-180 µ m components, appearing in 2-5 mm flow distance from orifice in diabetes. This was accompanied by thickening of the wall of larger arterioles ( > 220 µ m) and thinning of the wall of smaller (100-140 µ m) arterioles (p < 0.001). Blood flow should cover larger distances in diabetic networks, but interestingly STZ-induced diabetes did not generate further geometrical changes in TNC KO mice. Conclusions: Diabetes promotes hypertrophic and hypotrophic vascular remodeling and induces vasculogenesis at well defined, specific positions of the coronary vasculature. TNC plays a pivotal role in the formation of coronary network geometry, and TNC deletion causes parallel fragmentation preventing diabetes-induced abnormal vascular morphologies.

9.
Heliyon ; 8(11): e11533, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36406706

RESUMEN

Hypertension and andropause both accelerate age-related vascular deterioration. We aimed to evaluate the effects of angiotensin-II induced hypertension and deficiency of testosterone combined regarding the resistance coronaries found intramurally. Four male groups were formed from the animals: control group (Co, n = 10); the group that underwenr orchidectomy (ORC, n = 13), those that received an infusion of angiotensin-II (AII, n = 10) and a grous that received AII infusion and were also surgically orchidectomized (AII + ORC, n = 8). AII and AII + ORC animals were infused with infusing angiotensin-II (100 ng/min/kg) using osmotic minipumps. Orchidectomy was perfomed in the ORC and the AII + ORC groupsto establish deficiency regarding testosterone. Following four weeks of treatment, pressure-arteriography was performed in vitro, and the tone induced by administration of thromboxane-agonist (U46619) and bradykinin during analysis of the intramural coronaries (well-known to be resistance arterioles) was studied. U46619-induced vasoconstriction poved to be significantly decreased in the ORC and AII + ORC groups when compared with Co and AII animals. In ORC and AII + ORC groups, the bradykinin-induced relaxation was also significantly reduced to a greater extent compared to Co and AII rats. Following orchidectomy, the vasocontraction and vasodilatation capacity of blood vessels is reduced. The effect of testosterone deficiency on constrictor tone and relaxation remains pronounced even in AII hypertension: testosterone deficiency further narrows adaptation range in the double noxa (AII + ORC) group. Our studies suggest that vascular changes caused by high blood pressure and testosterone deficiency together may significantly increase age-related cardiovascular risk.

10.
Nutrients ; 14(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35631182

RESUMEN

The aim of our study was to identify whether vitamin-D deficiency (VDD) can alter the geometry of the coronary-resistance-artery system. Male Wistar rats were divided into vitamin-D-deficient (VD-, n = 10) and vitamin-D-supplemented (VD+, n = 8) groups. After eight weeks, branches and segments of the left-anterior-descending-coronary-artery (LAD) network were analyzed by a video-microscopy technique. Segments were divided into 50 µm-long cylindrical ring units. VDD did not increase the number of morphological abnormalities. The number of segments did not differ between the groups (VD-: 210 and VD+: 224; pooled data of 8 networks). A larger lumen area of branches was found in VD+ group, while 1-4-order branches were lengthier in the VD- group. VD- rats had less rich coronary-resistance-artery networks in terms of 50 µm-long units. (VD-: 6365 vs. VD+: 6602; pooled data of 8 networks). VD+ animals were richer in the 100-350 µm outer diameter range, and VD- animals were richer in the 400-550 µm-diameter units. In VD- rats, 150-200 and 300 µm units were almost missing at higher flow distances from the orifice. Serum vitamin-D alterations caused by dietary changes can affect the geometry of the coronary-artery network, which may contribute to vitamin-D-dependent changes in cardiovascular mortality.


Asunto(s)
Vasos Coronarios , Deficiencia de Vitamina D , Animales , Suplementos Dietéticos , Masculino , Ratas , Ratas Wistar , Roedores , Vitaminas/farmacología
11.
Physiol Int ; 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35230262

RESUMEN

BACKGROUND AND AIMS: Endogenous gaseous substances, such as NO and CO have been found to be effective vasodilators earlier. H2S has been identified as an additional one, however, for that substance both vasodilatory and vasoconstrictor responses have been described in different vascular territories. Our aim was to examine the effect of hydrogen sulfide on the tone of cerebral arterioles and some aspects of its mechanism. METHODS: The work was performed on excised rat anterior cerebral artery segments in vitro (diameter range 150-250 µm), using a pressure myograph system. We used NaHS as exogenous H2S donor, propargylglycine (PAG) to abolish the endogenous synthesis of hydrogen sulfide and 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) to examine the potential role of Cl-/HCO3 - exchanger in the effects of H2S. The time course of the events after application of exogenous H2S was also evaluated. RESULTS: Our findings revealed that in these pathologically important vessels (1) endogenously produced H2S is not a vasodilator, but a moderate vasoconstrictor; (2) H2S has a biphasic effect: low concentrations are moderate vasoconstrictors, while at higher concentrations the initial contraction is followed by dilatation; (3) that vasodilation is prevented by DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium, an inhibitor of the Cl-/HCO3 - exchanger). CONCLUSION: These studies confirm that H2S should be taken into consideration as a modulator of cerebral arteriolar tone in mammals.

12.
Life (Basel) ; 12(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35207477

RESUMEN

Infertility is increasing worldwide; male factors can be identified in nearly half of all infertile couples. Histopathologic evaluation of testicular tissue can provide valuable information about infertility; however, several different evaluation methods and semi-quantitative score systems exist. Our goal was to describe a new, accurate and easy-to-use quantitative computer-based histomorphometric-mathematical image analysis methodology for the analysis of testicular tissue. On digitized, original hematoxylin-eosin (HE)-stained slides (scanned by slide-scanner), quantitatively describable characteristics such as area, perimeter and diameter of testis cross-sections and of individual tubules were measured with the help of continuous magnification. Immunohistochemically (IHC)-stained slides were digitized with a microscope-coupled camera, and IHC-staining intensity measurements on digitized images were also taken. Suggested methods are presented with mathematical equations, step-by-step detailed characterization and representative images are given. Our novel quantitative histomorphometric-mathematical image analysis method can improve the reproducibility, objectivity, quality and comparability of andrological-reproductive medicine research by recognizing even the mild impairments of the testicular structure expressed numerically, which might not be detected with the present semi-quantitative score systems. The technique is apt to be subjected to further automation with machine learning and artificial intelligence and can be named 'Computer-Assisted or -Aided Testis Histology' (CATHI).

13.
Am J Physiol Heart Circ Physiol ; 322(2): H310-H318, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995166

RESUMEN

During aerobic exercise, hemodynamic alterations occur. Although blood flow in skeletal muscle arteries increases, it decreases in visceral vessels because of mesenterial vasoconstriction. However, maintaining renal blood flow during intensive sport is also a priority. Our aim was to investigate the changes of vascular reactivity and histology of isolated renal artery of male and female rats in response to swim training. Wistar rats were distributed into four groups: male sedentary (MSed), male trained (MTr), female sedentary (FSed), and female trained (FTr). Trained animals underwent a 12-wk-long intensive swimming program. Vascular function of isolated renal artery segments was examined by wire myography. Phenylephrine-induced contraction was lower in FSed than in MSed animals, and it was decreased by training in male but not in female animals. Inhibition of cyclooxygenases by indomethacin reduced contraction in both sedentary groups, and in MTr but not in FTr animals. Inhibition of nitric oxide production increased contraction in both trained groups. Acetylcholine induced relaxation was similar in all experimental groups showing predominant NO-dependency. Elastin and smooth muscle cell actin density was reduced in female rats after aerobic training. This study shows that, as a result of a 12-wk-long training, there are sex differences in renal arterial responses following exercise training. Swimming moderates renal artery vasoconstriction in male animals, whereas it depresses elastic fiber and smooth muscle actin density in females.NEW & NOTEWORTHY We provided the first detailed analysis of the adaptation of the renal artery after aerobic training in male and female rats. As a result of a 12-wk-long training program, the pharmacological responses of renal arteries changed only in male animals. In phenylephrine-induced contraction, cyclooxygenase-mediated vasoconstriction mechanisms lost their significance in female rats, whereas NO-dependent relaxation became a significant contraction reducing factor in both sexes. Early structural changes, such as reduced elastin and smooth muscle cell actin evolves in females.


Asunto(s)
Arteria Renal/fisiología , Caracteres Sexuales , Natación , Vasoconstricción , Acetilcolina/farmacología , Actinas/metabolismo , Animales , Agonistas Colinérgicos/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Elastina/metabolismo , Femenino , Indometacina/farmacología , Masculino , Fenilefrina/farmacología , Condicionamiento Físico Animal/métodos , Ratas , Ratas Wistar , Arteria Renal/efectos de los fármacos , Arteria Renal/metabolismo , Vasoconstrictores/farmacología
14.
Geroscience ; 43(6): 2761-2784, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762274

RESUMEN

Aging-induced pathological alterations of the circulatory system play a critical role in morbidity and mortality of older adults. While the importance of cellular and molecular mechanisms of arterial aging for increased cardiovascular risk in older adults is increasingly appreciated, aging processes of veins are much less studied and understood than those of arteries. In this review, age-related cellular and morphological alterations in the venous system are presented. Similarities and dissimilarities between arterial and venous aging are highlighted, and shared molecular mechanisms of arterial and venous aging are considered. The pathogenesis of venous diseases affecting older adults, including varicose veins, chronic venous insufficiency, and deep vein thrombosis, is discussed, and the potential contribution of venous pathologies to the onset of vascular cognitive impairment and neurodegenerative diseases is emphasized. It is our hope that a greater appreciation of the cellular and molecular processes of vascular aging will stimulate further investigation into strategies aimed at preventing or retarding age-related venous pathologies.


Asunto(s)
Sistema Cardiovascular , Disfunción Cognitiva , Várices , Insuficiencia Venosa , Anciano , Disfunción Cognitiva/etiología , Humanos
15.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360792

RESUMEN

The vitamin-D-sensitivity of the cardiovascular system may show gender differences. The prevalence of vitamin D (VD) deficiency (VDD) is high, and it alters cardiovascular function and increases the risk of stroke. Our aim was to investigate the vascular reactivity and histological changes of isolated carotid artery of female and male rats in response to different VD supplies. A total of 48 male and female Wistar rats were divided into four groups: female VD supplemented, female VDD, male VD supplemented, male VDD. The vascular function of isolated carotid artery segments was examined by wire myography. Both vitamin D deficiency and male gender resulted in increased phenylephrine-induced contraction. Acetylcholine-induced relaxation decreased in male rats independently from VD status. Inhibition of prostanoid signaling by indomethacin reduced contraction in females, but increased relaxation ability in male rats. Functional changes were accompanied by VDD and gender-specific histological alterations. Elastic fiber density was significantly decreased by VDD in female rats, but not in males. Smooth muscle actin and endothelial nitric oxide synthase levels were significantly lowered, but the thromboxane receptor was elevated in VDD males. Decreased nitrative stress was detected in both male groups independently from VD supply. The observed interactions between vitamin D deficiency and sex may play a role in the gender difference of cardiovascular risk.


Asunto(s)
Arterias Carótidas/fisiopatología , Caracteres Sexuales , Vasoconstricción , Vasodilatación , Deficiencia de Vitamina D/fisiopatología , Animales , Arterias Carótidas/metabolismo , Femenino , Masculino , Ratas , Ratas Wistar , Deficiencia de Vitamina D/metabolismo
16.
Front Physiol ; 12: 685664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322036

RESUMEN

BACKGROUND: The cardiovascular effects of training have been widely investigated; however, few studies have addressed sex differences in arteriolar adaptation. In the current study, we examined the adaptation of the gracilis arterioles of male and female rats in response to intensive training. METHODS: Wistar rats were divided into four groups: male exercise (ME) and female exercise (FE) animals that underwent a 12-week intensive swim-training program (5 days/week, 200 min/day); and male control (MC) and female control (FC) animals that were placed in water for 5 min daily. Exercise-induced cardiac hypertrophy was confirmed by echocardiography. Following the training, the gracilis muscle arterioles were prepared, and their biomechanical properties and functional reactivity were tested, using pressure arteriography. Collagen and smooth muscle remodeling were observed in the histological sections. RESULTS: Left ventricular mass was elevated in both sexes in response to chronic training. In the gracilis arterioles, the inner radius and wall tension increased in female animals, and the wall thickness and elastic modulus were reduced in males. Myogenic tone was reduced in the ME group, whereas norepinephrine-induced vasoconstriction was elevated in the FE group. More pronounced collagen staining was observed in the ME group than in the MC group. Relative hypertrophy and tangential stress of the gracilis arterioles were higher in females than in males. The direct vasoconstriction induced by testosterone was lower in females and was reduced as an effect of exercise in males. CONCLUSION: The gracilis muscle arteriole was remodeled as a result of swim training, and this adaptation was sex dependent.

17.
Curr Issues Mol Biol ; 43(1): 79-92, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066967

RESUMEN

BACKGROUND: Vitamin D deficiency (VDD) may be considered an independent cardiovascular (CV) risk factor, and it is well known that CV risk is higher in males. Our goal was to investigate the pharmacological reactivity and receptor expression of intramural coronary artery segments of male rats in cases of different vitamin D supply. METHODS: Four-week-old male Wistar rats were divided into a control group (n = 11) with optimal vitamin D supply (300 IU/kgbw/day) and a VDD group (n = 11, <0.5 IU/kgbw/day). After 8 weeks of treatment, intramural coronary artery segments were microprepared, their pharmacological reactivity was examined by in vitro microangiometry, and their receptor expression was investigated by immunohistochemistry. RESULTS: Thromboxane A2 (TXA2)-agonist induced reduced vasoconstriction, testosterone (T) and 17-ß-estradiol (E2) relaxations were significantly decreased, a significant decrease in thromboxane receptor (TP) expression was shown, and the reduction in estrogen receptor-α (ERα) expression was on the border of significance in the VDD group. CONCLUSIONS: VD-deficient male coronary arteries showed deteriorated pharmacological reactivity to TXA2 and sexual steroids (E2, T). Insufficient vasoconstrictor capacity was accompanied by decreased TP receptor expression, and vasodilator impairments were mainly functional. The decrease in vasoconstrictor and vasodilator responses results in narrowed adaptational range of coronaries, causing inadequate coronary perfusion that might contribute to the increased CV risk in VDD.


Asunto(s)
Arteriolas/patología , Enfermedad de la Arteria Coronaria/patología , Estradiol/farmacología , Testosterona/farmacología , Tromboxano A2/farmacología , Deficiencia de Vitamina D/complicaciones , Andrógenos/farmacología , Animales , Arteriolas/metabolismo , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Modelos Animales de Enfermedad , Estrógenos/farmacología , Masculino , Ratas , Ratas Wistar , Receptores de Tromboxanos/metabolismo , Vasoconstricción , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/patología
19.
Biol Sex Differ ; 12(1): 37, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039432

RESUMEN

BACKGROUND: We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. METHODS: Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 µm in diameter were studied using divided 50-µm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. RESULTS: The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-µm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-µm vessels appeared unusually close to the orifice. CONCLUSIONS: Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.


Asunto(s)
Vasos Coronarios , Caracteres Sexuales , Animales , Femenino , Hipertrofia Ventricular Izquierda , Masculino , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Natación , Función Ventricular Izquierda
20.
Cells ; 10(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805075

RESUMEN

Angiotensin II (Ang II) has various cardiac effects and causes vasoconstriction. Ang II activates the type-1 angiotensin receptor-Gq/11 signaling pathway resulting in the release of 2-arachidonoylglycerol (2-AG). We aimed to investigate whether cardiac Ang II effects are modulated by 2-AG-release and to identify the role of type-1 cannabinoid receptors (CB1R) in these effects. Expression of CB1R in rat cardiac tissue was confirmed by immunohistochemistry. To characterize short-term Ang II effects, increasing concentrations of Ang II (10-9-10-7 M); whereas to assess tachyphylaxis, repeated infusions of Ang II (10-7 M) were administered to isolated Langendorff-perfused rat hearts. Ang II infusions caused a decrease in coronary flow and ventricular inotropy, which was more pronounced during the first administration. CB agonist 2-AG and WIN55,212-2 administration to the perfusate enhanced coronary flow. The flow-reducing effect of Ang II was moderated in the presence of CB1R blocker O2050 and diacylglycerol-lipase inhibitor Orlistat. Our findings indicate that Ang II-induced cardiac effects are modulated by simultaneous CB1R-activation, most likely due to 2-AG-release during Ang II signalling. In this combined effect, the response to 2-AG via cardiac CB1R may counteract the positive inotropic effect of Ang II, which may decrease metabolic demand and augment Ang II-induced coronary vasoconstriction.


Asunto(s)
Angiotensina II/farmacología , Endocannabinoides/metabolismo , Corazón/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Circulación Coronaria/efectos de los fármacos , Endocannabinoides/farmacología , Glicéridos/farmacología , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Orlistat/farmacología , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA