Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Npj Imaging ; 2(1): 28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132311

RESUMEN

The ability to image early treatment response to radiotherapy in head and neck squamous cell carcinoma (HNSCC) will enable the identification of radioresistant tumor volumes suitable for treatment intensification. Here, we propose the system xc - radiotracer (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG) as a non-invasive method to monitor radiation response in HNSCC. We assessed temporal changes in cell death, antioxidant status, and [18F]FSPG retention following a single dose of 10 Gy irradiation in FaDU HNSCC cells. Next, using a fractionated course of radiotherapy, we assessed tumor volume changes and performed [18F]FSPG-PET imaging in FaDU-bearing mouse xenografts, followed by ex vivo response assessment. In cells, 10 Gy irradiation reduced [18F]FSPG retention, coinciding with the induction of apoptosis and the production of reactive oxygen species. In vivo, [18F]FSPG tumor retention was halved seven days after the start of treatment, which preceded radiotherapy-induced tumor shrinkage, thereby confirming [18F]FSPG-PET as an early and sensitive marker of radiation response.

2.
Nucl Med Biol ; 122-123: 108352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37390607

RESUMEN

Targeted Meitner-Auger Therapy (TMAT) has potential for personalized treatment thanks to its subcellular dosimetric selectivity, which is distinct from the dosimetry of ß- and α particle emission based Targeted Radionuclide Therapy (TRT). To date, most clinical and preclinical TMAT studies have used commercially available radionuclides. These studies showed promising results despite using radionuclides with theoretically suboptimal photon to electron ratios, decay kinetics, and electron emission spectra. Studies using radionuclides whose decay characteristics are considered more optimal are therefore important for evaluation of the full potential of Meitner-Auger therapy; 119Sb is among the best such candidates. In the present work, we develop radiochemical purification of 120Sb from irradiated natural tin targets for TMAT studies with 119Sb.


Asunto(s)
Antimonio , Electrones , Antimonio/uso terapéutico , Radioquímica , Radioisótopos/uso terapéutico , Radiofármacos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA