Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36838427

RESUMEN

Many facultative and obligate anaerobes reduce perchlorate. Likewise, carbon monoxide (CO) oxidation has been documented in many aerobes, facultative anaerobes, and obligate anaerobes. A molybdenum-dependent CO dehydrogenase (Mo-CODH) and a nickel-dependent CO dehydrogenase (Ni-CODH) distinguish the former from the latter. Some Mo-dependent CO oxidizers (Mo-COX) couple CO oxidation to perchlorate reduction, but only at low concentrations of both under conditions that do not support growth in cultures. In contrast, CO-coupled perchlorate reduction has not been documented in Ni-dependent CO oxidizers (Ni-COX). To assess the potential for Ni-COX to reduce perchlorate, a model, obligately anaerobic homoacetogen, Moorella glycerini DSM 11254T, was cultivated with or without perchlorate, usiing CO or glycerol as its sole carbon and energy source. It grew with glycerol with or without perchlorate, and its maximum cell densities were only weakly affected by the perchlorate. However, when CO (at a 30% headspace concentration) was used as a carbon and energy source, perchlorate reduction supported greater cell densities and more rapid growth rates. The stoichiometry of CO uptake, perchlorate reduction, and chloride production were consistent with the cryptic pathway for perchlorate reduction with chlorite as an end product. Chloride production occurred abiologically in the medium due to a reaction between chlorite and the sulfide used as a reducing agent. These results provide the first demonstration of CO-coupled perchlorate reduction supporting growth in Ni-COX, and they provide constraints on the potential for perchlorate-coupled, anaerobic CO oxidation in engineered systems as well as terrestrial systems and hypothetical, sub-surface, serpentinite-hosted systems on Mars.

2.
Int J Syst Evol Microbiol ; 70(7): 4261-4268, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32568028

RESUMEN

Three novel carbon monoxide-oxidizing Halobacteria were isolated from Bonneville Salt Flats (Utah, USA) salt crusts and nearby saline soils. Phylogenetic analysis of 16S rRNA gene sequences revealed that strains PCN9T, WSA2T and WSH3T belong to the genera Halobacterium, Halobaculum and Halovenus, respectively. Strains PCN9T, WSA2T and WSH3T grew optimally at 40 °C (PCN9T) or 50 °C (WSA2T, WSH3T). NaCl optima were 3 M (PCN9T, WSA2T) or 4 M NaCl (WSH3T). Carbon monoxide was oxidized by all isolates, each of which contained a molybdenum-dependent CO dehydrogenase. G+C contents for the three respective isolates were 66.75, 67.62, and 63.97 mol% as derived from genome analyses. The closest phylogenetic relatives for PCN9T, WSA2T and WSH3T were Halobacterium noricense A1T, Halobaculum roseum D90T and Halovenus aranensis EB27T with 98.71, 98.19 and 95.95 % 16S rRNA gene sequence similarities, respectively. Genome comparisons of PCN9T with Halobacterium noricense A1T yielded an average nucleotide identity (ANI) of 82.0% and a digital DNA-DNA hybridization (dDDH) value of 25.7 %; comparisons of WSA2T with Halobaculum roseum D90T yielded ANI and dDDH values of 86.34 and 31.1 %, respectively. The ANI value for a comparison of WSH3T with Halovenus aranensis EB27T was 75.2 %. Physiological, biochemical, genetic and genomic characteristics of PCN9T, WSA2T and WSH3T differentiated them from their closest phylogenetic neighbours and indicated that they represent novel species for which the names Halobaculum bonnevillei, Halobaculum saliterrae and Halovenus carboxidivorans are proposed, respectively. The type strains are PCN9T (=JCM 32472=LMG 31022=ATCC TSD-126), WSA2T (=JCM 32473=ATCC TSD-127) and WSH3T (=JCM 32474=ATCC TSD-128).


Asunto(s)
Halobacteriaceae/clasificación , Halobacterium/clasificación , Filogenia , Salinidad , Microbiología del Suelo , Monóxido de Carbono/metabolismo , ADN de Archaea/genética , Halobacteriaceae/aislamiento & purificación , Halobacterium/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química , Utah
3.
Front Microbiol ; 8: 2571, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312249

RESUMEN

The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars' regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO) at a concentration of about 700 parts per million (about 0.4 Pa) might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars' brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars' atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.

4.
Int J Syst Evol Microbiol ; 66(12): 5328-5335, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27692038

RESUMEN

A novel member of Acidobacteria was isolated from a microbial mat growing on a geothermally heated dead tree trunk in Hawai'i Volcanoes National Park (HI, USA). The rod-shaped, Gram-negative capsulated cells of strain PMMR2T were non-motile and catalase and oxidase negative. Growth occurred aerobically from 15 to 55 °C (optimum, 40 °C) and at pH values from 4.5 to 7.0 (optimum, 6.5). A limited range of sugars and organic acids supported growth. However, results of a genomic analysis suggested that various polysaccharides might be hydrolysed as carbon sources, and evidence for pectin degradation was observed in liquid cultures. A genomic analysis also revealed genes for a Group 1f uptake hydrogenase; assays with liquid cultures confirmed hydrogen consumption, including uptake at sub-atmospheric concentrations. Nitrate was not dissimilated to nitrite. Major membrane fatty acids included iso-C15 : 0 and iso-C17 : 0. The G+C content was 57.2mol%. A comparative genome analysis revealed an average nucleotide identity of 72.2 % between PMMR2T and its nearest cultured phylogenetic neighbour, Acidobacterium capsulatum ATCC 51196T (=JCM 7670T); analysis of the 16S rRNA gene revealed a 96.8 % sequence identity with Acidobacterium capsulatum ATCC 51196T. These results and other phenotypic differences indicated that strain PMMR2T represents a novel species in the genus Acidobacterium, for which the name Acidobacterium ailaaui sp. nov. is proposed. The type strain, PMMR2T (=DSM 27394T=LMG 28340T), is the second formal addition to the genus Acidobacterium.


Asunto(s)
Acidobacteria/clasificación , Consorcios Microbianos , Filogenia , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Metabolismo de los Hidratos de Carbono , ADN Bacteriano/genética , Ácidos Grasos/química , Hawaii , Calor , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA