Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Orthop Relat Res ; 472(11): 3523-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25106797

RESUMEN

BACKGROUND: Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. QUESTIONS/PURPOSES: Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. METHODS: Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n=104; young adult) and 25-month-old (n=107; which we defined as geriatric, and are approximately equivalent to 70-85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). RESULTS: The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08±11.53 mm3 versus 43.19±18.39 mm3; p=0.009), density (mean bone mineral density at 20 days postfracture, 171.14±64.20 mg hydroxyapatite [HA]/cm3 versus 210.79±37.60 mg HA/cm3; p=0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279±46,755 square pixels versus 302,167±137,806 square pixels; p=0.013) and bone content (mean bone volume at 20 days postfracture, 11.68±3.18 mm3 versus 22.34±10.59 mm3; p<0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48±0.10 versus 0.50±0.13; p=0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135+25 versus 90±52; p=0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2±5.3 versus 18.7±5.2; p=0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25%±6.8% versus 42%±14.5%; p=0.047). CONCLUSIONS: Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. CLINICAL RELEVANCE: Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.


Asunto(s)
Envejecimiento/fisiología , Huesos/patología , Callo Óseo/patología , Callo Óseo/fisiología , Curación de Fractura/fisiología , Envejecimiento/patología , Animales , Densidad Ósea/fisiología , Huesos/diagnóstico por imagen , Cartílago/fisiología , Modelos Animales de Enfermedad , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/patología , Fracturas Óseas/fisiopatología , Humanos , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Células Madre/patología , Células Madre/fisiología , Microtomografía por Rayos X
2.
J Orthop Trauma ; 28 Suppl 1: S20-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24378431

RESUMEN

OBJECTIVES: Morbidity associated with geriatric fractures may be attributed, in part, to compromised mesenchymal stem cell (MSC) function within the fracture callus. The Notch signaling pathway is important for the healing of nonskeletal tissues in an age-dependent manner, but the effect of Notch on age-dependent fracture healing and MSC dysfunction has not been substantiated. The objective of this study was to examine Notch signaling in MSCs obtained from young and geriatric mice. METHODS: Marrow-derived MSCs were harvested from the femora of 5- and 25-month-old C57BL/6 mice. We assessed in vivo MSC number using CFU-F, proliferation using an Alamar Blue assay, osteoblast differentiation by Alizarin Red S staining, and adipogenic differentiation using Oil Red O staining. Notch receptor and ligand expression was assessed using quantitative PCR, and Notch signaling was assessed by evaluating Notch target gene expression (Hey and HES) under basal conditions and when cells were plated to Jagged-1 ligand. RESULTS: MSC from geriatric mice exhibit reduced MSC number (CFU-F), proliferation, adipogenesis, and inconsistent osteogenesis. The highest expressed Notch receptor is Notch 2, and the highest expressed ligand is Jagged-1, but there were no differences in ligand and receptor gene expression between young and old MSCs. Interestingly, geriatric MSCs show decreased basal Notch signaling activity but are fully responsive to Jagged-1 stimulation. CONCLUSIONS: These data suggest that therapeutic targeting of Notch signaling should be explored in clinical therapies to improve geriatric fracture healing.


Asunto(s)
Callo Óseo/metabolismo , Curación de Fractura/fisiología , Células Madre Mesenquimatosas/metabolismo , Receptor Notch2/biosíntesis , Factores de Edad , Animales , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Diferenciación Celular , Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Masculino , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Serrate-Jagged , Transducción de Señal
3.
PLoS One ; 8(7): e68726, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844237

RESUMEN

The Notch signaling pathway is an important regulator of embryological bone development, and many aspects of development are recapitulated during bone repair. We have previously reported that Notch signaling components are upregulated during bone fracture healing. However, the significance of the Notch pathway in bone regeneration has not been described. Therefore, the objective of this study was to determine the importance of Notch signaling in regulating bone fracture healing by using a temporally controlled inducible transgenic mouse model (Mx1-Cre;dnMAML(f/-)) to impair RBPjκ-mediated canonical Notch signaling. The Mx1 promoter was synthetically activated resulting in temporally regulated systemic dnMAML expression just prior to creation of bilateral tibial fractures. This allowed for mice to undergo unaltered embryological and post-natal skeletal development. Results showed that systemic Notch inhibition prolonged expression of inflammatory cytokines and neutrophil cell inflammation, and reduced the proportion of cartilage formation within the callus at 10 days-post-fracture (dpf) Notch inhibition did not affect early bone formation at 10dpf, but significantly altered bone maturation and remodeling at 20dpf. Increased bone volume fraction in dnMAML fractures, which was due to a moderate decrease in callus size with no change in bone mass, coincided with increased trabecular thickness but decreased connectivity density, indicating that patterning of bone was altered. Notch inhibition decreased total osteogenic cell density, which was comprised of more osteocytes rather than osteoblasts. dnMAML also decreased osteoclast density, suggesting that osteoclast activity may also be important for altered fracture healing. It is likely that systemic Notch inhibition had both direct effects within cell types as well as indirect effects initiated by temporally upstream events in the fracture healing cascade. Surprisingly, Notch inhibition did not alter cell proliferation. In conclusion, our results demonstrate that the Notch signaling pathway is required for the proper temporal progression of events required for successful bone fracture healing.


Asunto(s)
Callo Óseo/metabolismo , Curación de Fractura/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Remodelación Ósea/genética , Callo Óseo/patología , Cartílago/metabolismo , Diferenciación Celular/fisiología , Condrogénesis/genética , Femenino , Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA