Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 434(17): 167610, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490897

RESUMEN

Drug research and development is a multidisciplinary field with its own successes. Yet, given the complexity of the process, it also faces challenges over the long development stages and even includes those that develop once a drug is marketed, i.e. drug toxicity and drug resistance. Better success can be achieved via well designed criteria in the early drug development stages. Here, we introduce the concepts of allostery and missense mutations, and argue that incorporation of these two intermittently linked biological phenomena into the early computational drug discovery stages would help to reduce the attrition risk in later stages of the process. We discuss the individual or in concert mechanisms of actions of mutations in allostery. Design of allosteric drugs is challenging compared to orthosteric drugs, yet they have been gaining popularity in recent years as alternative systems for the therapeutic regulation of proteins with an action-at-a-distance mode and non-invasive mechanisms. We propose an easy-to-apply computational allosteric drug discovery protocol which considers the mutation effect, and detail it with three case studies focusing on (1) analysis of effect of an allosteric mutation related to isoniazid drug resistance in tuberculosis; (2) identification of a cryptic pocket in the presence of an allosteric mutation of falcipain-2 as a malarial drug target; and (3) deciphering the effects of SARS-CoV-2 evolutionary mutations on a potential allosteric modulator with changes to allosteric communication paths.


Asunto(s)
Descubrimiento de Drogas , Mutación Missense , Regulación Alostérica/genética , Sitio Alostérico , Simulación por Computador , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana , Humanos , SARS-CoV-2/genética
2.
ACS Omega ; 7(15): 13313-13332, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474779

RESUMEN

Resistance mutations in Mycobacterium tuberculosis (Mtb) catalase peroxidase protein (KatG), an essential enzyme in isoniazid (INH) activation, reduce the sensitivity of Mtb to first-line drugs, hence presenting challenges in tuberculosis (TB) management. Thus, understanding the mutational imposed resistance mechanisms remains of utmost importance in the quest to reduce the TB burden. Herein, effects of 11 high confidence mutations in the KatG structure and residue network communication patterns were determined using extensive computational approaches. Combined traditional post-molecular dynamics analysis and comparative essential dynamics revealed that the mutant proteins have significant loop flexibility around the heme binding pocket and enhanced asymmetric protomer behavior with respect to wild-type (WT) protein. Heme contact analysis between WT and mutant proteins identified a reduction to no contact between heme and residue His270, a covalent bond vital for the heme-enabled KatG catalytic activity. Betweenness centrality calculations showed large hub ensembles with new hubs especially around the binding cavity and expanded to the dimerization domain via interface in the mutant systems, providing possible compensatory allosteric communication paths for the active site as a result of the mutations which may destabilize the heme binding pocket and the loops in its vicinity. Additionally, an interesting observation came from Eigencentrality hubs, most of which are located in the C-terminal domain, indicating relevance of the domain in the protease functionality. Overall, our results provide insight toward the mechanisms involved in KatG-INH resistance in addition to identifying key regions in the enzyme functionality, which can be used for future drug design.

3.
Comput Struct Biotechnol J ; 19: 5647-5666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745456

RESUMEN

Continually emerging resistant strains of malarial parasites to current drugs present challenges. Understanding the underlying resistance mechanisms, especially those linked to allostery is, thus, highly crucial for drug design. This forms the main concern of the paper through a case study of falcipain 2 (FP-2) and its mutations, some of which are linked to artemisinin (ART) drug resistance. Here, we applied a variety of in silico approaches and tools that we developed recently, together with existing computational tools. This included novel essential dynamics and dynamic residue network (DRN) analysis algorithms. We identified six pockets demonstrating dynamic differences in the presence of some mutations. We observed striking allosteric effects in two mutant proteins. In the presence of M245I, a cryptic pocket was detected via a unique mechanism in which Pocket 2 fused with Pocket 6. In the presence of the A353T mutation, which is located at Pocket 2, the pocket became the most rigid among all protein systems analyzed. Pocket 6 was also highly stable in all cases, except in the presence of M245I mutation. The effect of ART linked mutations was more subtle, and the changes were at residue level. Importantly, we identified an allosteric communication path formed by four unique averaged BC hubs going from the mutated residue to the catalytic site and passing through the interface of three identified pockets. Collectively, we established and demonstrated that we have robust tools and a pipeline that can be applicable to the analysis of mutations.

4.
J Cheminform ; 13(1): 64, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488889

RESUMEN

We report the major conclusions of the online open-access workshop "Computational Applications in Secondary Metabolite Discovery (CAiSMD)" that took place from 08 to 10 March 2021. Invited speakers from academia and industry and about 200 registered participants from five continents (Africa, Asia, Europe, South America, and North America) took part in the workshop. The workshop highlighted the potential applications of computational methodologies in the search for secondary metabolites (SMs) or natural products (NPs) as potential drugs and drug leads. During 3 days, the participants of this online workshop received an overview of modern computer-based approaches for exploring NP discovery in the "omics" age. The invited experts gave keynote lectures, trained participants in hands-on sessions, and held round table discussions. This was followed by oral presentations with much interaction between the speakers and the audience. Selected applicants (early-career scientists) were offered the opportunity to give oral presentations (15 min) and present posters in the form of flash presentations (5 min) upon submission of an abstract. The final program available on the workshop website ( https://caismd.indiayouth.info/ ) comprised of 4 keynote lectures (KLs), 12 oral presentations (OPs), 2 round table discussions (RTDs), and 5 hands-on sessions (HSs). This meeting report also references internet resources for computational biology in the area of secondary metabolites that are of use outside of the workshop areas and will constitute a long-term valuable source for the community. The workshop concluded with an online survey form to be completed by speakers and participants for the goal of improving any subsequent editions.

5.
Molecules ; 26(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069161

RESUMEN

The dimeric dihydropyrimidine dehydrogenase (DPD), metalloenzyme, an adjunct anti-cancer drug target, contains highly specialized 4 × Fe2+4S2-4 clusters per chain. These clusters facilitate the catalysis of the rate-limiting step in the pyrimidine degradation pathway through a harmonized electron transfer cascade that triggers a redox catabolic reaction. In the process, the bulk of the administered 5-fluorouracil (5-FU) cancer drug is inactivated, while a small proportion is activated to nucleic acid antimetabolites. The occurrence of missense mutations in DPD protein within the general population, including those of African descent, has adverse toxicity effects due to altered 5-FU metabolism. Thus, deciphering mutation effects on protein structure and function is vital, especially for precision medicine purposes. We previously proposed combining molecular dynamics (MD) and dynamic residue network (DRN) analysis to decipher the molecular mechanisms of missense mutations in other proteins. However, the presence of Fe2+4S2-4 clusters in DPD poses a challenge for such in silico studies. The existing AMBER force field parameters cannot accurately describe the Fe2+ center coordination exhibited by this enzyme. Therefore, this study aimed to derive AMBER force field parameters for DPD enzyme Fe2+ centers, using the original Seminario method and the collation features Visual Force Field Derivation Toolkit as a supportive approach. All-atom MD simulations were performed to validate the results. Both approaches generated similar force field parameters, which accurately described the human DPD protein Fe2+4S2-4 cluster architecture. This information is crucial and opens new avenues for in silico cancer pharmacogenomics and drug discovery related research on 5-FU drug efficacy and toxicity issues.


Asunto(s)
Antineoplásicos/farmacología , Simulación por Computador , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Fluorouracilo/farmacología , Proteínas Hierro-Azufre/metabolismo , Neoplasias/tratamiento farmacológico , Farmacogenética , Animales , Antineoplásicos/uso terapéutico , Estabilidad de Enzimas/efectos de los fármacos , Fluorouracilo/uso terapéutico , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Análisis de Componente Principal , Protones , Teoría Cuántica , Homología Estructural de Proteína , Porcinos , Termodinámica
6.
J Cheminform ; 13(1): 37, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952332

RESUMEN

BACKGROUND: South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/ ) is the sole and a fully referenced database of natural chemical compounds of South African biodiversity. It is freely available, and since its inception in 2015, the database has become an important resource to several studies. Its content has been: used as training data for machine learning models; incorporated to larger databases; and utilized in drug discovery studies for hit identifications. DESCRIPTION: Here, we report the updated version of SANCDB. The new version includes 412 additional compounds that have been reported since 2015, giving a total of 1012 compounds in the database. Further, although natural products (NPs) are an important source of unique scaffolds, they have a major drawback due to their complex structure resulting in low synthetic feasibility in the laboratory. With this in mind, SANCDB is, now, updated to provide direct links to commercially available analogs from two major chemical databases namely Mcule and MolPort. To our knowledge, this feature is not available in other NP databases. Additionally, for easier access to information by users, the database and website interface were updated. The compounds are now downloadable in many different chemical formats. CONCLUSIONS: The drug discovery process relies heavily on NPs due to their unique chemical organization. This has inspired the establishment of numerous NP chemical databases. With the emergence of newer chemoinformatic technologies, existing chemical databases require constant updates to facilitate information accessibility and integration by users. Besides increasing the NPs compound content, the updated SANCDB allows users to access the individual compounds (if available) or their analogs from commercial databases seamlessly.

7.
Malar J ; 19(1): 442, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256744

RESUMEN

BACKGROUND: Plasmodial transketolase (PTKT) enzyme is one of the novel pharmacological targets being explored as potential anti-malarial drug target due to its functional role and low sequence identity to the human enzyme. Despite this, features contributing to such have not been exploited for anti-malarial drug design. Additionally, there are no anti-malarial drugs targeting PTKTs whereas the broad activity of these inhibitors against PTKTs from other Plasmodium spp. is yet to be reported. This study characterises different PTKTs [Plasmodium falciparum (PfTKT), Plasmodium vivax (PvTKT), Plasmodium ovale (PoTKT), Plasmodium malariae (PmTKT) and Plasmodium knowlesi (PkTKT) and the human homolog (HsTKT)] to identify key sequence and structural based differences as well as the identification of selective potential inhibitors against PTKTs. METHODS: A sequence-based study was carried out using multiple sequence alignment, phylogenetic tree calculations and motif discovery analysis. Additionally, TKT models of PfTKT, PmTKT, PoTKT, PmTKT and PkTKT were modelled using the Saccharomyces cerevisiae TKT structure as template. Based on the modelled structures, molecular docking using 623 South African natural compounds was done. The stability, conformational changes and detailed interactions of selected compounds were accessed viz all-atom molecular dynamics (MD) simulations and binding free energy (BFE) calculations. RESULTS: Sequence alignment, evolutionary and motif analyses revealed key differences between plasmodial and the human TKTs. High quality homodimeric three-dimensional PTKTs structures were constructed. Molecular docking results identified three compounds (SANC00107, SANC00411 and SANC00620) which selectively bind in the active site of all PTKTs with the lowest (better) binding affinity ≤ - 8.5 kcal/mol. MD simulations of ligand-bound systems showed stable fluctuations upon ligand binding. In all systems, ligands bind stably throughout the simulation and form crucial interactions with key active site residues. Simulations of selected compounds in complex with human TKT showed that ligands exited their binding sites at different time steps. BFE of protein-ligand complexes showed key residues involved in binding. CONCLUSIONS: This study highlights significant differences between plasmodial and human TKTs and may provide valuable information for the development of novel anti-malarial inhibitors. Identified compounds may provide a starting point in the rational design of PTKT inhibitors and analogues based on these scaffolds.


Asunto(s)
Antimaláricos/química , Plasmodium/genética , Proteínas Protozoarias , Transcetolasa , Secuencia de Aminoácidos , Antimaláricos/farmacología , Dominio Catalítico , Ligandos , Simulación de Dinámica Molecular , Filogenia , Plasmodium/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Transcetolasa/antagonistas & inhibidores , Transcetolasa/química , Transcetolasa/genética , Transcetolasa/metabolismo
8.
Comput Struct Biotechnol J ; 18: 1103-1120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489525

RESUMEN

Pyrazinamide (PZA) is the only first-line antitubercular drug active against latent Mycobacterium tuberculosis (Mtb). It is activated to pyrazinoic acid by the pncA-encoded pyrazinamidase enzyme (PZase). Despite the emergence of PZA drug resistance, the underlying mechanisms of resistance remain unclear. This study investigated part of these mechanisms by modelling a PZA-bound wild type and 82 mutant PZase structures before applying molecular dynamics (MD) with an accurate Fe2+ cofactor coordination geometry. After observing nanosecond-scale PZA unbinding from several PZase mutants, an algorithm was developed to systematically detect ligand release via centre of mass distances (COM) and ligand average speed calculations, before applying the statistically guided network analysis (SGNA) method to investigate conserved protein motions associated with ligand unbinding. Ligand and cofactor perspectives were also investigated. A conserved pair of lid-destabilising motions was found. These consisted of (1) antiparallel lid and side flap motions; (2) the contractions of a flanking region within the same flap and residue 74 towards the core. Mutations affecting the hinge residues (H51 and H71), nearby residues or L19 were found to destabilise the lid. Additionally, other metal binding site (MBS) mutations delocalised the Fe2+ cofactor, also facilitating lid opening. In the early stages of unbinding, a wider variety of PZA poses were observed, suggesting multiple exit pathways. These findings provide insights into the late events preceding PZA unbinding, which we found to occur in some resistant PZase mutants. Further, the algorithm developed here to identify unbinding events coupled with SGNA can be applicable to other similar problems.

9.
Molecules ; 24(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703388

RESUMEN

The hemoglobin degradation process in Plasmodium parasites is vital for nutrient acquisition required for their growth and proliferation. In P. falciparum, falcipains (FP-2 and FP-3) are the major hemoglobinases, and remain attractive antimalarial drug targets. Other Plasmodium species also possess highly homologous proteins to FP-2 and FP-3. Although several inhibitors have been designed against these proteins, none has been commercialized due to associated toxicity on human cathepsins (Cat-K, Cat-L and Cat-S). Despite the two enzyme groups sharing a common structural fold and catalytic mechanism, distinct active site variations have been identified, and can be exploited for drug development. Here, we utilize in silico approaches to screen 628 compounds from the South African natural sources to identify potential hits that can selectively inhibit the plasmodial proteases. Using docking studies, seven abietane diterpenoids, binding strongly to the plasmodial proteases, and three additional analogs from PubChem were identified. Important residues involved in ligand stabilization were identified for all potential hits through binding pose analysis and their energetic contribution determined by binding free energy calculations. The identified compounds present important scaffolds that could be further developed as plasmodial protease inhibitors. Previous laboratory assays showed the effect of the seven diterpenoids as antimalarials. Here, for the first time, we demonstrate that their possible mechanism of action could be by interacting with falcipains and their plasmodial homologs. Dynamic residue network (DRN) analysis on the plasmodial proteases identified functionally important residues, including a region with high betweenness centrality, which had previously been proposed as a potential allosteric site in FP-2.


Asunto(s)
Abietanos/química , Antimaláricos/química , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/química , Plasmodium falciparum/enzimología , Inhibidores de Proteasas/química , Proteínas Protozoarias , Animales , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Sudáfrica
10.
Malar J ; 18(1): 159, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053072

RESUMEN

BACKGROUND: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS: Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS: Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS: Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.


Asunto(s)
Dominio Catalítico , Cisteína Endopeptidasas/química , Péptido Hidrolasas/química , Péptidos/química , Secuencia de Aminoácidos , Catepsinas/química , Simulación por Computador , Precursores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Homología Estructural de Proteína
11.
Sci Rep ; 9(1): 4718, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886338

RESUMEN

According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC50 = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Euphorbiaceae/química , Ácido Gálico/análogos & derivados , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Síndrome de Inmunodeficiencia Adquirida/virología , Evaluación Preclínica de Medicamentos , Ácido Gálico/química , Ácido Gálico/aislamiento & purificación , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Integrasa de VIH/ultraestructura , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/aislamiento & purificación , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/efectos de los fármacos , VIH-1/enzimología , Células HeLa , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Corteza de la Planta/química , Tallos de la Planta/química , Dominios Proteicos , Proteínas Recombinantes , Pruebas de Toxicidad
12.
Sci Rep ; 6: 23690, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27030511

RESUMEN

Identification of potential drug targets as well as development of novel antimalarial chemotherapies with unique mode of actions due to drug resistance by Plasmodium parasites are inevitable. Falcipains (falcipain-2 and falcipain-3) of Plasmodium falciparum, which catalyse the haemoglobin degradation process, are validated drug targets. Previous attempts to develop peptide based drugs against these enzymes have been futile due to the poor pharmacological profiles and susceptibility to degradation by host enzymes. This study aimed to identify potential non-peptide inhibitors against falcipains and their homologs from other Plasmodium species. Structure based virtual docking approach was used to screen a small non-peptidic library of natural compounds from South Africa against 11 proteins. A potential hit, 5α-Pregna-1,20-dien-3-one (5PGA), with inhibitory activity against plasmodial proteases and selectivity on human cathepsins was identified. A 3D similarity search on the ZINC database using 5PGA identified five potential hits based on their docking energies. The key interacting residues of proteins with compounds were identified via molecular dynamics and free binding energy calculations. Overall, this study provides a basis for further chemical design for more effective derivatives of these compounds. Interestingly, as these compounds have cholesterol-like nuclei, they and their derivatives might be well tolerated in humans.


Asunto(s)
Antimaláricos/química , Cisteína Endopeptidasas/química , Plasmodium falciparum/química , Pregnadienos/química , Proteínas Protozoarias/antagonistas & inhibidores , Productos Biológicos/química , Catepsinas/química , Bases de Datos de Proteínas , Resistencia a Medicamentos , Hemoglobinas/química , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Plasmodium falciparum/enzimología , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Protozoarias/química , Bibliotecas de Moléculas Pequeñas/química , Sudáfrica , Relación Estructura-Actividad , Termodinámica
13.
J Biomol Struct Dyn ; 34(10): 2084-101, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26471975

RESUMEN

Falcipain-2 (FP-2) and falcipain-3 (FP-3), haemoglobin-degrading enzymes in Plasmodium falciparum, are validated drug targets for the development of effective inhibitors against malaria. However, no commercial drug-targeting falcipains has been developed despite their central role in the life cycle of the parasites. In this work, in silico approaches are used to identify key structural elements that control the binding and selectivity of a diverse set of non-peptidic compounds onto FP-2, FP-3 and homologues from other Plasmodium species as well as human cathepsins. Hotspot residues and the underlying non-covalent interactions, important for the binding of ligands, are identified by interaction fingerprint analysis between the proteases and 2-cyanopyridine derivatives (best hits). It is observed that the size and chemical type of substituent groups within 2-cyanopyridine derivatives determine the strength of protein-ligand interactions. This research presents novel results that can further be exploited in the structure-based molecular-guided design of more potent antimalarial drugs.


Asunto(s)
Antimaláricos/química , Proteasas de Cisteína/química , Inhibidores de Cisteína Proteinasa/química , Modelos Moleculares , Plasmodium/enzimología , Secuencia de Aminoácidos , Antimaláricos/farmacología , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Descubrimiento de Drogas , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Flujo de Trabajo
14.
PLoS One ; 10(8): e0134273, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26280450

RESUMEN

Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.


Asunto(s)
Biología Computacional/métodos , Metodologías Computacionales , Programas Informáticos , Almacenamiento y Recuperación de la Información , Internet , Interfaz Usuario-Computador , Flujo de Trabajo
15.
J Cheminform ; 7: 29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097510

RESUMEN

BACKGROUND: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa. DESCRIPTION: The current research presents a South African natural compound database, named SANCDB. This is a curated and fully-referenced database containing compound information for 600 natural products extracted directly from journal articles, book chapters and theses. There is a web interface to the database, which is simple and easy to use, while allowing for compounds to be searched by a number of different criteria. Being fully referenced, each compound page contains links to the original referenced work from which the information was obtained. Further, the website provides a submission pipeline, allowing researchers to deposit compounds from their own research into the database. CONCLUSIONS: SANCDB is currently the only web-based NP database in Africa. It aims to provide a useful resource for the in silico screening of South African NPs for drug discovery purposes. The database is supported by a submission pipeline to allow growth by entries from researchers. As such, we currently present SANCDB the starting point of a platform for a community-driven, curated database to further natural products research in South Africa. SANCDB is freely available at https://sancdb.rubi.ru.ac.za/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA