Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0296471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381738

RESUMEN

The Tennessee Eastman Process (TEP) is widely recognized as a standard reference for assessing the effectiveness of fault detection and false alarm tracking methods in intricate industrial operations. This paper presents a novel methodology that employs the Adaptive Crow Search Algorithm (ACSA) to improve fault identification capabilities and mitigate the occurrence of false alarms in the TEP. The ACSA is an optimization approach that draws inspiration from the observed behavior of crows in their natural environment. This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. The primary objective of our research is to devise a monitoring strategy that is adaptable in nature, with the aim of efficiently identifying faults within the TEP while simultaneously minimizing the occurrence of false alarms. The ACSA is applied in order to enhance the optimization of monitoring variables, alarm thresholds, and decision criteria selection and configuration. When compared to traditional static approaches, the ACSA-based monitoring strategy is better at finding faults and reducing false alarms because it adapts well to changes in process dynamics and disturbances. In order to assess the efficacy of our suggested methodology, we have conducted comprehensive simulations on the TEP dataset. The findings suggest that the monitoring strategy based on ACSA demonstrates superior fault identification rates while concurrently mitigating the frequency of false alarms. In addition, the flexibility of ACSA allows it to efficiently manage process variations, disturbances, and uncertainties, thereby enhancing its robustness and reliability in practical scenarios. To validate the effectiveness of our proposed approach, extensive simulations were conducted on the TEP dataset. The results indicate that the ACSA-based monitoring strategy achieves higher fault detection rates while simultaneously reducing the occurrence of false alarms. Moreover, the adaptability of ACSA enables it to effectively handle process variations, disturbances, and uncertainties, making it robust and reliable for real-world applications. The contributions of this research extend beyond the TEP, as the adaptive monitoring strategy utilizing ACSA can be applied to other complex industrial processes. The findings of this study provide valuable insights into the development of advanced fault detection and false alarm monitoring techniques, offering significant benefits in terms of process safety, reliability, and operational efficiency.


Asunto(s)
Algoritmos , Ambiente , Reproducibilidad de los Resultados , Tennessee
2.
Artif Intell Med ; 131: 102359, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100347

RESUMEN

BACKGROUND: Currently, the healthcare sector strives to improve the quality of patient care management and to enhance/increase its economic performance/efficiency (e.g., cost-effectiveness) by healthcare providers. The data stored in electronic health records (EHRs) offer the potential to uncover relevant patterns relating to diseases and therapies, which in turn could help identify empirical medical guidelines to reflect best practices in a healthcare system. Based on this pattern of identification model, it is thus possible to implement recommender systems with the notion that a higher volume of procedures is often associated with better high-quality models. METHODS: Although there are several different applications that uses machine learning methods to identify such patterns, such identification is still a challenge, due in part because these methods often ignore the basic structure of the population, or even considering the similarity of diagnoses and patient typology. To this end, we have developed a method based on graph-data representation aimed to cluster 'similar' patients. Using such a model, patients will be linked when there is a same and/or similar patterns are being observed amongst them, a concept that will enable the construction of a network-like structure which is called a patient graph.1 This structure can be then analyzed by Graph Neural Networks (GNN) to identify relevant labels, and in this case the appropriate medical procedures that will be recommended. RESULTS: We were able to construct a patient graph structure based on the patient's basic information like age and gender as well as the diagnosis and the trained GNNs models to identify the corresponding patient's therapies using a synthetic patient database. We have even compared our GNN models against different baseline models (using the SCIKIT-learn library of python) and also against the performance of these different model-methods. We have found that the GNNs models are superior, with an average improvement of the f1 score of 6.48 % in respect to the baseline models. In addition, the GNNs models are useful in performing additional clustering analysis which allow a distinctive identification of specific therapeutic/treatment clusters relating to a particular combination of diagnoses. CONCLUSIONS: We found that the GNNs models offer a promising lead to model the distribution of diagnoses in patient population, and is thus a better model in identifying patients with similar phenotype based on the combination of morbidities and/or comorbidities. Nevertheless, network/graph building is still challenging and prone to biases as it is highly dependent on how the ICD distribution affects the patient network embedding space. This graph setup not only requires a high quality of the underlying diagnostic ecosystem, but it also requires a good understanding on how patients at hand are identified by disease respectively. For this reason, additional work is still needed to better improve patient embedding in graph structures for future investigations and the applications of this service-based technology. Therefore, there has not been any interventional study yet.


Asunto(s)
Ecosistema , Redes Neurales de la Computación , Bases de Datos Factuales , Humanos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA