Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; : e17505, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188071

RESUMEN

Interrogating the ecological and geographic factors that influence population divergence dynamics can reveal why some groups of organisms diversify more prolifically than others. One such group is the heathers (Erica, Ericaceae), the largest plant genus in the Cape Floristic Region. We study Erica abietina, a highly variable species complex with four subspecies differing in geographic range, habitat and pollination syndrome. We test for population differentiation, hybridisation, introgression and pollinator-driven divergence using genotyping-by-sequencing on samples across the entire distribution. We find five variably distinct genetic groups, with one subspecies comprising two independent lineages that are geographically isolated and occur on different soil types. Phylogenetic analysis suggests two independent shifts between bird and insect pollination, with accompanying genetic divergence. However, for one pair of populations with different pollinators, we uncover several individuals of hybrid origin at a site of sympatry. These results suggest that floral differentiation driven by divergent selection acts in concert with geographic isolation to maintain reproductive isolation and promote speciation. Our investigations reveal a highly dynamic system whose diversity has been shaped by a variety of interacting forces. We suggest that such a system could be a model for much of the diversification of the Cape flora.

2.
PhytoKeys ; 244: 127-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027483

RESUMEN

Estimates of the number of vascular plant species currently under threat of extinction are shockingly high, with the highest extinction rates reported for narrow-range, woody plants, especially in biodiversity hotspots with Mediterranean and tropical climates. The large genus Erica is a prime example, as a large proportion of its 851 species, all shrubs or small trees, are endemic to the Cape Floristic Region (CFR) of South Africa. Almost two hundred are known to be threatened and a further hundred are 'Data Deficient'. We need to target conservation efforts and research to fill the most problematic knowledge gaps. This can be especially challenging in large genera, such as Erica, with numerous threatened species that are closely related. One approach involves combining knowledge of phylogenetic diversity with that of IUCN threat status to identify the most Evolutionarily Distinct and Globally Endangered (EDGE) species. We present an expanded and improved phylogenetic hypothesis for Erica (representing 65% of described species diversity) and combine this with available threat and distribution data to identify species and geographic areas that could be targeted for conservation effort to maximise preservation of phylogenetic diversity (PD). The resulting 39 EDGE taxa include 35 from the CFR. A further 32 high PD, data deficient taxa are mostly from outside the CFR, reflecting the low proportion of assessed taxa outside South Africa. The most taxon-rich areas are found in the south-western CFR. They are not the most phylogenetically diverse, but do include the most threatened PD. These results can be cross-referenced to existing living and seed-banked ex situ collections and used to target new and updated threat assessments and conservation action.

3.
PhytoKeys ; 241: 143-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699680

RESUMEN

Species identification is fundamental to all aspects of biology and conservation. The process can be challenging, particularly in groups including many closely related or similar species. The problem is confounded by the absence of an up-to-date taxonomic revision, but even with such a resource all but professional botanists may struggle to recognise key species, presenting a substantial barrier to vital work such as surveys, threat assessments, and seed collection for ex situ conservation. Genus Erica: An Identification Aid is a tool to help both amateurs and professionals identify (using a limited number of accessible characteristics) and find information about the 851 species and many subspecific taxa of the genus Erica. We present an updated version 4.00, with new features including integrating distribution data from GBIF and iNaturalist, links to taxonomic resources through World Flora Online, and a probability function for identifications, that is freely available for PCs. It remains a work in progress: We discuss routes forward for collaboratively improving this resource.

4.
Mol Ecol ; 30(1): 175-192, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152114

RESUMEN

While the tempo of diversification in biodiversity hotspots has received much attention, the spatial scale of diversification has often been overlooked. Addressing this deficiency requires understanding the drivers of population divergence and the spatial scales at which they operate in species-rich clades and ecosystems. South Africa's Succulent Karoo (SK) hotspot provides an excellent system for such research, being both compact (ca. 110,000 km2 ) and home to spectacular in-situ radiations, such as the ruschioid Aizoaceae. Here we use GBS to document genetic structure in two co-occurring ruschioid species, at both coarse (>10 km) and fine (<500 m) spatial scales. Where Ruschia burtoniae shows strong between-population genetic differentiation and no gene flow, Conophytum calculus shows weak differentiation, with high levels of admixture suggesting recent or ongoing gene flow. Community analysis and transplant experiments reveal that R. burtoniae occupies a narrow, low-pH edaphic niche, and at scales of a few hundred metres, areas of elevated genetic turnover correspond to patches of edaphically unsuitable habitat. In contrast, C. calculus occupies a broader niche and exhibits isolation-by-distance without a habitat effect. We suggest that edaphic specialisation, coupled with highly restricted seed and pollen dispersal in heterogeneous landscapes, has played a major role in driving rapid diversification at small spatial scales in this system. However, the contrasting patterns in our study species show that these factors do not influence all organisms uniformly, being strongly modulated by lineage-specific traits that influence both the spatial scale of gene flow and habitat specificity.


Asunto(s)
Ecosistema , Flujo Génico , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA