Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res ; 19: 82-93, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28088038

RESUMEN

Whether or not neurogenesis occurs in the adult substantia nigra pars compacta (SNc) is an important question relevant for developing better treatments for the motor symptoms of Parkinson's disease (PD). Although controversial, it is generally believed that dividing cells here remain undifferentiated or differentiate into glia, not neurons. However, there is a suggestion that Nestin-expressing neural precursor cells (NPCs) in the adult SNc have a propensity to differentiate into neurons, which we sought to confirm in the present study. Adult (>8-weeks old) transgenic NesCreERT2/GtROSA or NesCreERT2/R26eYFP mice were used to permanently label Nestin-expressing cells and their progeny with ß-galactosidase (ß-gal) or enhanced yellow fluorescent protein (eYFP), respectively. Most ß-gal+ or eYFP+ cells were found in the ependymal lining of the midbrain aqueduct (Aq) and in the midline ventral to Aq. Smaller but significant numbers were in the periaqueductal gray (PAG), the ventral tegmental area (VTA), and in SNc. Low-level basal proliferation was evidenced by a modest increase in number of ß-gal+ or eYFP+ cells over time, fewer ß-gal+ or eYFP+ cells when mice were administered the anti-mitotic agent Cytarabine, and incorporation of the proliferation marker bromodeoxyuridine (BrdU) in a very small number of ß-gal+ cells. No evidence of migration was found, including no immunoreactivity against the migration markers doublecortin (DCX) or polysialic acid neural cell adhesion molecule (PSA-NCAM), and no dispersal of ß-gal+ or eYFP+ cells through the midbrain parenchyma over time. However, ß-gal+ or eYFP+ cells did increase in size and express higher levels of mature neuronal genes over time, indicating growth and neuronal differentiation. In mice whose SNc dopamine neurons had been depleted with 6-hydroxy-dopamine, a model of PD, there were ~2-fold more ß-gal+ cells in SNc specifically, although the proportion that were also NeuN+ was not affected. Remarkably, as early as 4days following putative Nestin-expression, many ß-gal+ or eYFP+ cells had mature neuronal morphology and were NeuN+. Furthermore, mature neuronal ß-gal+ cells were immunoreactive against the self-renewal or pluripotency marker sex determining region Y-box 2 (Sox2). Overall, our data support the notion that some Nestin-expressing, presumably NPCs, have a limited capacity for proliferation, no capacity for migration, and a propensity to generate new neurons within the microenvironment of the adult midbrain. However, our data also suggest that significant numbers of extant midbrain neurons express Nestin and other classical neurogenesis markers in contexts that are presumably not neurogenic. These findings foreshadow duplicitous roles for Nestin and other molecules that are traditionally associated with neurogenesis in the adult midbrain, which should be considered in future PD research.


Asunto(s)
Mesencéfalo/metabolismo , Nestina/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN , Neuronas Dopaminérgicas/metabolismo , Proteína Doblecortina , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Neurogénesis , Proteínas Nucleares/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Factores de Transcripción SOXB1/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA