Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377615

RESUMEN

The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.


Asunto(s)
Phocidae , Vibrisas , Animales , Vibración
2.
Bioinspir Biomim ; 19(1)2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37939394

RESUMEN

Pinniped vibrissae possess a unique and complex three-dimensional topography, which has beneficial fluid flow characteristics such as substantial reductions in drag, lift, and vortex induced vibration. To understand and leverage these effects, the downstream vortex dynamics must be studied. Dye visualization is a traditional qualitative method of capturing these downstream effects, specifically in comparative biological investigations where complex equipment can be prohibitive. High-fidelity numerical simulations or experimental particle image velocimetry are commonplace for quantitative high-resolution flow measurements, but are computationally expensive, require costly equipment, and can have limited measurement windows. This study establishes a method for extracting quantitative data from standard dye visualization experiments on seal whisker geometries by leveraging novel but intuitive computer vision techniques, which maintain simplicity and an advantageous large experimental viewing window while automating the extraction of vortex frequency, position, and advection. Results are compared to direct numerical simulation (DNS) data for comparable geometries. Power spectra and Strouhal numbers show consistent behavior between methods for a Reynolds number of 500, with minima at the canonical geometry wavelength of 3.43 and a peak frequency of 0.2 for a Reynolds number of 250. The vortex tracking reveals a clear increase in velocity from roll-up to 3.5 whisker diameters downstream, with a strong overlap with the DNS data but shows steady results beyond the limited DNS window. This investigation provides insight into a valuable bio-inspired engineering model while advancing an analytical methodology that can readily be applied to a broad range of comparative biological studies.


Asunto(s)
Caniformia , Phocidae , Animales , Vibrisas , Vibración , Simulación por Computador
3.
Anat Rec (Hoboken) ; 305(3): 577-591, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122671

RESUMEN

North Atlantic right whales (NARWs; Eubalaena glacialis) possess an arrangement of fine hairs on the rostrum and chin that may be used for hydrodynamic sensing during feeding. These hairs occur across mysticete species and are known to possess adequate innervation in the subdermal follicle to support their consideration as sensory hairs (vibrissae). However, the small size of the hair structure with respect to the enormous scale of the animal's body has caused doubts regarding their utility and prompted speculation that the hairs may be vestigial or minimally functional. Here we show that NARW hairs occur in abundance on the leading surface of the head in a unique and characteristic arrangement. We consider the sensory hairs in context of the fluid environment in which this species forages and argue that the size of the hair is scaled to the size of the animal's small planktonic prey, thus suggesting that the hairs play an important role in the sensory ecology of these animals.


Asunto(s)
Señales (Psicología) , Ballenas , Animales , Cabello , Hidrodinámica
4.
PLoS One ; 15(10): e0241142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119653

RESUMEN

The complex undulated geometry of seal whiskers has been shown to substantially modify the turbulent structures directly downstream, resulting in a reduction of hydrodynamic forces as well as modified vortex-induced-vibration response when compared with smooth whiskers. Although the unique hydrodynamic response has been well documented, an understanding of the fluid flow effects from each geometric feature remains incomplete. In this computational investigation, nondimensional geometric parameters of the seal whisker morphology are defined in terms of their hydrodynamic relevance, such that wavelength, aspect ratio, undulation amplitudes, symmetry and undulation off-set can be varied independently of one another. A two-factor fractional factorial design of experiments procedure is used to create 16 unique geometries, each of which dramatically amplifies or attenuates the geometric parameters compared with the baseline model. The flow over each unique topography is computed with a large-eddy simulation at a Reynolds number of 500 with respect to the mean whisker thickness and the effects on force and frequency are recorded. The results determine the specific fluid flow impact of each geometric feature which will inform both biologists and engineers who seek to understand the impact of whisker morphology or lay out a framework for biomimetic design of undulated structures.


Asunto(s)
Hidrodinámica , Phoca/anatomía & histología , Vibración , Vibrisas/anatomía & histología , Animales , Simulación por Computador
5.
Bioinspir Biomim ; 13(5): 053001, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29855430

RESUMEN

Bioinspiration-using insights into the function of biological systems for the development of new engineering concepts-is already a successful and rapidly growing field. However, only a small portion of the world's biodiversity has thus far been considered as a potential source for engineering inspiration. This means that vast numbers of biological systems of potentially high value to engineering have likely gone unnoticed. Even more important, insights into form and function that reside in the evolutionary relationships across the tree of life have not yet received attention by engineers. These insights could soon become accessible through recent developments in disparate areas of research; in particular, advancements in digitization of museum specimens, methods to describe and analyze complex biological shapes, quantitative prediction of biological function from form, and analysis of large digital data sets. Taken together, these emerging capabilities should make it possible to mine the world's known biodiversity as a natural resource for knowledge relevant to engineering. This transformation of bioinspiration would be very timely in the development of engineering, because it could yield exactly the kind of insights that are needed to make technology more autonomous, adaptive, and capable of operation in complex environments.


Asunto(s)
Ingeniería/métodos , Investigación , Tecnología/métodos
6.
Sci Rep ; 7(1): 8350, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827572

RESUMEN

Although it is known that seals can use their whiskers (vibrissae) to extract relevant information from complex underwater flow fields, the underlying functioning of the system and the signals received by the sensors are poorly understood. Here we show that the vibrations of seal whiskers may provide information about hydrodynamic events and enable the sophisticated wake-tracking abilities of these animals. We developed a miniature accelerometer tag to study seal whisker movement in situ. We tested the ability of the tag to measure vibration in excised whiskers in a flume in response to laminar flow and disturbed flow. We then trained a seal to wear the tag and follow an underwater hydrodynamic trail to measure the whisker signals available to the seal. The results showed that whiskers vibrated at frequencies of 100-300 Hz, with a dynamic response. These measurements are the first to capture the incoming signals received by the vibrissae of a live seal and show that there are prominent signals at frequencies where the seal tactogram shows good sensitivity. Tapping into the mechanoreceptive interface between the animal and the environment may help to decipher the functional basis of this extraordinary hydrodynamic detection ability.


Asunto(s)
Hidrodinámica , Phoca/fisiología , Vibración , Vibrisas/fisiología , Animales , Masculino , Phoca/anatomía & histología , Vibrisas/anatomía & histología
7.
Bioinspir Biomim ; 11(5): 056011, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27580063

RESUMEN

Nature has shaped effective biological sensory systems to receive complex stimuli generated by organisms moving through water. Similar abilities have not yet been fully developed in artificial systems for underwater detection and monitoring, but such technology would enable valuable applications for military, commercial, and scientific use. We set out to design a fluid motion sensor array inspired by the searching performance of seals, which use their whiskers to find and follow underwater wakes. This sensor prototype, called the Wake Information Detection and Tracking System (WIDTS), features multiple whisker-like elements that respond to hydrodynamic disturbances encountered while moving through water. To develop and test this system, we trained a captive harbor seal (Phoca vitulina) to wear a blindfold while tracking a remote-controlled, propeller-driven submarine. After mastering the tracking task, the seal learned to carry the WIDTS adjacent to its own vibrissal array during active pursuit of the target. Data from the WIDTS sensors describe changes in the deflection angles of the whisker elements as they pass through the hydrodynamic trail left by the submarine. Video performance data show that these detections coincide temporally with WIDTS-wake intersections. Deployment of the sensors on an actively searching seal allowed for the direct comparison of our instrument to the ability of the biological sensory system in a proof-of-concept demonstration. The creation of the WIDTS provides a foundation for instrument development in the field of biomimetic fluid sensor technology.


Asunto(s)
Materiales Biomiméticos , Hidrodinámica , Phoca/anatomía & histología , Phoca/fisiología , Vibrisas/anatomía & histología , Vibrisas/fisiología , Animales , Órganos Artificiales , Técnicas Biosensibles
8.
J Exp Biol ; 218(Pt 15): 2463-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26056243

RESUMEN

Prior efforts to characterize the capabilities of the vibrissal system in seals have yielded conflicting results. Here, we measured the sensitivity of the vibrissal system of a harbor seal (Phoca vitulina) to directly coupled sinusoidal stimuli delivered by a vibrating plate. A trained seal was tested in a psychophysical paradigm to determine the smallest velocity that was detectable at nine frequencies ranging from 10 to 1000 Hz. The stimulus plate was driven by a vibration shaker and the velocity of the plate at each frequency-amplitude combination was calibrated with a laser vibrometer. To prevent cueing from other sensory stimuli, the seal was fitted with a blindfold and headphones playing broadband masking noise. The seal was sensitive to vibrations across the range of frequencies tested, with best sensitivity of 0.09 mm s(-1) at 80 Hz. Velocity thresholds as a function of frequency showed a characteristic U-shaped curve with decreasing sensitivity below 20 Hz and above 250 Hz. To ground-truth the experimental setup, four human subjects were tested in the same paradigm using their thumb to contact the vibrating plate. Threshold measurements for the humans were similar to those of the seal, demonstrating comparable tactile sensitivity for their structurally different mechanoreceptive systems. The thresholds measured for the harbor seal in this study were about 100 times more sensitive than previous in-air measures of vibrissal sensitivity for this species. The results were similar to those reported by others for the detection of waterborne vibrations, but show an extended range of frequency sensitivity.


Asunto(s)
Phoca/fisiología , Vibrisas/fisiología , Animales , Femenino , Humanos , Masculino , Mecanorreceptores/fisiología , Tacto , Vibración , Adulto Joven
9.
PLoS One ; 8(7): e69872, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922834

RESUMEN

Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the vibrissae.


Asunto(s)
Caniformia/fisiología , Reología , Vibración , Vibrisas/fisiología , Análisis de Varianza , Animales , Procesamiento de Señales Asistido por Computador , Especificidad de la Especie , Natación/fisiología , Tomografía Computarizada por Rayos X , Vibrisas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA