Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 925: 171749, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494009

RESUMEN

Historically, dissolved organic nitrogen (DON) has not been characterized in the nitrogen profiles of most estuaries despite its significant contribution to total nitrogen and projected increase in loading. The characterization of dissolved inorganic nitrogen (DIN) and DON processing from groundwater to surface water also remains unconstrained. This study attempts to fill in these knowledge gaps by quantifying the DON pool and potential sources in a semiarid, low inflow estuary (Baffin Bay, Texas) using stable isotope techniques. High NO3- and DON concentrations, and high δ15N-NH4+ (+55.0 ± 56.7 ‰), δ15N-NO3- (+23.9 ± 8.6 ‰) and δ15N-DON (+22.3 ± 6.5 ‰) were observed in groundwaters of a septic-influenced estuarine area, indicating coupled septic contamination and nitrification/denitrification. In contrast, groundwater of an undeveloped area provided evidence of inundation by bay water through high NH4+ concentrations and δ15N-NH4+ (+8.4 ± 3.0 ‰) resembling estuary porewater. NH4+ was the dominant nitrogen species in porewater of both areas and δ15N-NH4+ indicated production via organic nitrogen mineralization and dissimilatory nitrate reduction to ammonium. Surface water had similar nitrogen profiles (DON constituted ∼98 % of dissolved nitrogen pool) and potential source contributions, despite distinct nitrogen processing and profiles found in each water table. This was attributed to low nitrogen removal rates and prolonged mixing associated with long residence time. This study emphasizes the importance of DON in a low-inflow estuary and the isotopic approach to comprehensively examine both inorganic and organic N processing and sources serving as a guide to investigate N cycling in high DON estuaries globally.

2.
Environ Pollut ; 343: 123152, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104759

RESUMEN

Organic nitrogen (ON) has been excluded in the majority of atmospheric N studies. However, dissolved organic nitrogen (DON) deposition influences coastal water quality and primary production creating an urgent need for comprehensive atmospheric ON characterization, especially in coastal airsheds. This study measured the concentration and isotopic composition of rainwater DON (δ15N-DON) and applied stable isotope mixing models to determine the ON emission source apportionments in a small-sized coastal city. The DON concentration averaged 10.6 ± 7.6 µM (n = 42), which was 29% of the total dissolved nitrogen in rainwater and produced a deposition flux of 1.5 kg N·ha-1·yr-1. The average rainwater δ15N-DON value was 8.3 ± 5.3‰ and isotope mixing model results suggested vehicles as a dominant source, overall contributing 35 ± 15% of ON emissions, followed by marine emissions (24 ± 16%), organic amines (18 ± 11%), organic nitrates (17 ± 11%), and biomass burning (8 ± 3%). Although secondary ON formations (i.e., organic amines and nitrates) had less contributions than primary emission sources (i.e., vehicles, marine, and biomass burning), it can be significant and rival primary emissions when the fertilizer application started. Our results fill knowledge gaps of ON wet deposition and emission sources in small-sized coastal cities and inform future atmospheric N mitigation strategies and coastal watershed restoration plans in similar regions. We call for further research determining the isotopic composition of ON emission sources and fractionation associated with primary emission and secondary formation in anticipation of creating a similar isotope-based foundation that has been used for decades to investigate inorganic nitrogen emissions.


Asunto(s)
Nitratos , Nitrógeno , Nitrógeno/análisis , Nitratos/análisis , Isótopos , Biomasa , Aminas , Monitoreo del Ambiente/métodos , Isótopos de Nitrógeno/análisis , China
3.
Data Brief ; 51: 109651, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37869616

RESUMEN

The dataset features radon-222 (222Rn), a radioactive tracer naturally present and frequently employed to assess submarine groundwater discharge (SGD). This collection is part of a study aimed at refining SGD estimations in shallow estuaries through the prediction of 222Rn variations using accessible hydroclimatic parameters [1]. The dataset includes measurements of 222Rn in water gathered recurringly from Aug. 2019 to June 2021 at half-hour intervals, at a monitoring station near the shore in Corpus Christi Bay, TX, USA (n = 10,660). Additionally, the data set encompasses continuous, accessible hydroclimatic parameters (e.g., wind speed and direction, atmospheric pressure, water temperature, tide height, creek and river discharge rate, n = 35,088). These parameters were integrated into two machine learning models - Random forest (RF) and Deep Neural Network (DNN) - aiming to interpret the variations in 222Rn and forecast during the data gap. A generalized additive model (GAM) was utilized, focusing on interpreting the variability in 222Rn inventory, particularly influenced by windspeed and direction. The tools and data presented herein afford prospects to 1) forecast 222Rn inventories in areas with significant data voids using only publicly accessible hydroclimatic parameters, and 2) refine SGD estimations affected by wind, thereby offering valuable insights for the planning of field expeditions and the development of management strategies for coastal water and solute budgets.

4.
Sci Total Environ ; 823: 153814, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35157869

RESUMEN

To determine how submarine groundwater discharge (SGD) magnitudes and composition (fresh or saline/recirculated) vary in nearshore low inflow estuaries across ⁓125 km of a semiarid coastline, this study assessed three south Texas estuaries, using radon [222Rn], radium [226Ra and 224Ra], and water isotopes [δ18O and δD]. Mass balance models of time-series 222Rn, found to be representative of total SGD in this study, revealed much higher SGD inputs to the Nueces Estuary (average [x̅] Nueces, Corpus Christi and Oso Bays: 120, 83, and 44 cm·d-1, respectively), attributed to anthropogenically-disturbed substrates and potentially surfacing growth-faults. The lowest 222Rn-derived SGD occurred in the Upper Laguna Madre Estuary (x̅: Upper Laguna Madre and Baffin Bay: 21 and 18 cm·d-1, respectively), explained by the drier climate, lower anthropogenic disturbance, and neighboring groundwater cone of depression. Aransas Bay in the Mission Aransas Estuary received greater average annual precipitation but exhibited low total SGD rates (x̅: 23 cm·d-1). Seasonally, average 222Rn-derived SGD rates increased following Hurricane Harvey (43 cm·d-1 in spring to 64 cm·d-1 in summer). In the Nueces Estuary, the overall 222Rn-derived SGDs were substantially higher than SGDs from 224Ra and 226Ra. The closer agreement between 224Ra and 222Rn-derived SGD and larger 224Ra rates in the Upper Laguna Madre Estuary, Aransas Bay and Oso Bay indicate that saline/recirculated SGD contributions were significant. Values of δ18O and δD confirm these types of inputs, with effects of evaporation/salinization more pronounced where recirculation was predominant and the opposite where terrestrial/222Rn-derived SGD inputs dominate. 226Ra-derived SGDs were lower than the 224Ra due to different behavior of the two isotopes while released into water following transport through saline and fine-grained estuarine sediments or due to wind-driven disturbances.


Asunto(s)
Agua Subterránea , Radio (Elemento) , Monitoreo del Ambiente , Estuarios , Golfo de México , Radio (Elemento)/análisis , Agua de Mar
5.
Sci Total Environ ; 768: 144367, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33434811

RESUMEN

Stream-groundwater exchange has been investigated in a wide range of hydrologic settings, though very few studies have focused on fine-sediment streambeds. Well-established thermal methods (i.e., analytical and numerical solution of time-series temperature depth-profiles) in combination with Darcy's and electrical resistivity (ER) evaluations were implemented to improve understanding of processes dominating flow and transport in a low permeability and low-flow coastal stream such as Oso Creek, Texas. The seasonal-trend decomposition using Loess (STL) is tested as a potential means to differentiate between advection and conduction and is validated against groundwater fluxes derived from the other well-established thermal methods. The numerical and analytical solutions indicate groundwater upward discharge was 9 mm d-1 for summer and 3.5 mm d-1 for winter, corresponding to the region's extreme drought conditions. These types of low flow conditions are usually accompanied by hyporheic flow, limiting the vertical flow assumption. While the numerical and analytical methods provide good insight into streambed hydrology for a low-permeability and low-flow stream in a semiarid coastal area, there are limitations associated with the STL method. The analytical and numerical thermal methods employed herein confirm that conduction and diffusion are the dominant processes of heat and solute transfer in fine-sediment streambeds, providing an improved understanding of process-based groundwater-stream interaction and water resources in this type of settings.

6.
Sci Total Environ ; 755(Pt 2): 142574, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33069908

RESUMEN

Nutrient budgets in semi-arid estuaries, with ephemeral freshwater inflows and limited nutrient sources, are likely incomplete if contributions from submarine groundwater discharge (SGD) are not included. Here, the relative importance of saline/recirculated SGD-derived nutrient fluxes spatiotemporal variability to the overall nutrient budget is quantified for Nueces Bay, Texas, U.S.A., across hydroclimatic conditions ranging from drought to normal, to flood. On average, 67% of the variance in water quality is due to temporal differences while 16% is explained by spatial differences. Principal component analysis (PCA) reveals three principal components: freshwater inflow (PC1 28.8%), saline/recirculated SGD and recycled nitrogen (PC2 15.6%), and total SGD and "new" nitrogen (PC3 11.2%). Total SGD porewater fluxes ranged from 29.9-690.3 mmol∙m-2d-1 for ammonium, 0.21-18.7 mmol∙m-2d-1 for nitrite+nitrate, 3.1-51.3 mmol∙m-2d-1 for phosphate, 57.1-719.7 mmol∙m-2d-1 for silicate, and 95.9-36,838.5 mmol∙m-2d-1 for dissolved organic carbon. Total and saline/recirculated SGD fluxes were on average 150-26,000 and 5.8-466 times, respectively, greater than surface runoff fluxes across all seasons. Nitrogen (N) enrichment in porewater occurs near the agricultural fields because of soil N flushing and percolation to groundwater, which facilitates N-rich groundwater fluxes. There were substantial "new" N inputs from terrestrial groundwater following precipitation while saline/recirculated SGD of recycled N accounts for only <4% of total SGD inputs. The "new" N inputs occur in the river and river mouth during flooding, and near the north shore where topography and hydraulic gradients are steeper during drought. Thus, while significant inputs of N may be associated with atmospheric deposition, or remineralization in the porewater, groundwater is the highest contributor to the nutrient budget in Nueces Bay. This result implies that nutrient management strategies should focus on land-use practices to reduce N contamination of shallow groundwater and subsequent contamination of estuaries.

7.
Sci Total Environ ; 710: 136283, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31918191

RESUMEN

Submarine groundwater discharge (SGD) is often an overlooked component of the solute budgets in coastal embayments and is not considered in oyster restoration, conservation, and management plans. A combination of spatial and temporal geochemistry (nutrients, trace metals, alkalinity components, stable isotopes, and major ions) of porewater and surface water combined with SGD-derived solute fluxes and turnover times was used to examine the significance of SGD in delivering nutrients to paleovalley systems in coastal embayments, thus sustaining the health and productivity of oyster reefs. A 1-km2 area encompassing a paleovalley system, in Copano Bay, Texas, exhibited significant differences in the spatial and temporal hydrogeochemical characteristics (major ions, stable isotopes and nutrients) along the reef when compared to the other environments (i.e., paleovalley, estuary-wide). Solute fluxes (i.e., dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), total alkalinity, DIC, etc.) are slightly larger at the reef, followed by the margin and shoreline. During dry conditions, SGD from the 1-km2 area was estimated to supply anywhere between two-fold to one order of magnitude more nitrogen (in the form of DIN) than the riverine inputs to Copano Bay. During a wet year SGD equates the river input in the form of DIN. In addition, SGD-based turnover times, averaging <11 days for all nutrients, are significantly shorter than the average estuary flushing time (i.e., 38 days). Results from this study suggest that SGD within a paleovalley system is an important component in the estuarine nutrient budget through significant inputs and cycling processes between the subsurface and water column, particularly during low surface flows. Thus, estuarine environments such as paleovalley margins and interfluves provide favorable conditions to oysters through preferably enhanced SGD solute fluxes and should be considered in oyster restoration efforts.

8.
Sci Total Environ ; 630: 1343-1359, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29554754

RESUMEN

We conducted a comprehensive analysis of a variety of geochemical data including total alkalinity (TA), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), major ions, stable isotopes, and submarine groundwater discharge, to understand biogeochemical and hydrologic processes driving the seasonal to annual estuarine buffering capacity in Nueces Bay, Texas. These measurements, together with statistical analysis and geochemical modeling, show large variability of freshwater influence. TA consumption, common to spring seasons, was mainly driven by CaCO3 precipitation and, to some extent, by aerobic respiration. TA production occurred in some parts of the bay during summer, fall and winter, likely driven by denitrification. CaCO3 dissolution is stimulated by input of undersaturated river waters following significant flooding events. Since consumption and production of TA was not necessarily associated with different salinity zones, SGD, identified to be significant year-round, likely offsets the effects of salinity changes. Net DIC and TA fluxes exceeded dissolved organic carbon flux by an order of magnitude, except for winter 2014 when it was in the same order of magnitude. In addition to generally larger SGD rates when compared to other studies, production of TA (DIC and DOC) in the bottom sediments, as observed in this study, leads to larger fluxes, especially for the driest season (winter 2014), in the mid-bay area (6.27·106µMm-2d-1). Consistently larger inputs occur along the shoreline stations (6.14·106µMm-2d-1) following the flood recession, when compared to mid-bay (1.26·106µMm-2d-1) and are associated with lower SGD following the summer 2015 flooding. This study demonstrates that the carbonate chemistry of estuaries in semiarid areas is affected by non-conservative processes because of seasonal variability of hydroclimatic conditions.

9.
Sci Total Environ ; 572: 595-607, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27620959

RESUMEN

There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation of seasonal trends.


Asunto(s)
Agua Subterránea/química , Hidrología/métodos , Ríos , Calidad del Agua , Carbonato de Calcio/química , Isótopos de Carbono/análisis , Cloruros/análisis , Clima , Conductividad Eléctrica , Agua Subterránea/análisis , Isótopos de Oxígeno/análisis , Centrales Eléctricas , Radón/análisis , Sulfatos/análisis , Texas , Tomografía/métodos
10.
Sci Total Environ ; 532: 688-701, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26119383

RESUMEN

Groundwater contributions and sources of salinity to Oso Bay in south Texas were investigated using multivariate statistical analysis of geochemical data and multitemporal electrical resistivity tomography surveys. Both analysis of geochemical data and subsurface imaging techniques identified two commonalities for the investigated system: 1) hypersaline water occurs near the groundwater/surface water interface during wet conditions creating reverse hydraulic gradients due to density effects. The development and downward movement of these fluids as continuous plumes deflect fresher groundwater discharge downward and laterally away from the surface; and 2) more pronounced upwelling of fresher groundwater occurs during drought periods when density inversions are more defined and are expected to overcome dispersion and diffusion processes and create sufficiently large-enough unstable gradients that induce density-difference convection. Salinity mass-balance models derived from time-difference resistivity tomograph and in-situ salinity data reaffirm these findings indicating that groundwater upwelling is more prominent during dry to wet conditions in 2013 (~545.5m(3)/d) and is less pronounced during wet to dry conditions in 2012 (~262.7 m(3)/d) for the 224 m(2) area surveyed. Findings show that the highly saline nature of water in this area and changes in salinity regimes can be attributed to a combination of factors, namely: surface outflows, evapoconcentration, recirculation of hypersaline groundwaters, and potential trapped oil field brines. Increased drought conditions will likely exacerbate the rate at which salinity levels are increasing in bays and estuaries in semi-arid regions where both hypersaline groundwater discharge and high evaporation rates occur simultaneously.

11.
J Contam Hydrol ; 155: 69-81, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24212048

RESUMEN

Understanding the processes affecting the transport and fate of nitrate in coastal aquifers has become of great interest in recent years due to concerns of nutrient loading to coastal waters. Novel dual isotopic methods have shown promise for identifying sources and fate of nitrate in shallow groundwater. However, in relatively deep dynamic aquifer systems, the isotopic signatures may be overprinted by mixing of different end-member waters and biogeochemical processes. In this study, δ(15)N and δ(18)O of groundwater nitrate are coupled with other forensic geochemistry methods such as Cl/Br, SO4/Cl, and Cl/NO3 mass ratios and land use analysis in order to constrain the isotope correlations and better understand contaminant sources and biogeochemical processes. Most δ(15)NNO3 values were within ranges expected for nitrate formed by ammonia nitrification in soil. Furthermore, the persistent presence of nitrate in concentrations above background levels (median 2.3 mg/L) and the relatively low δ(15)NNO3 and δ(18)ONO3 (median: 4.5±0.2‰ AIR and 5.2±0.5‰ VSMOW, respectively) indicate no direct evidence of denitrification. However, denitrification was inferred for a few samples whereby more enriched δ(15)NNO3 and δ(18)ONO3 values coupled with an increase in SO4/Cl and Cl/NO3 ratios were observed. Finally, mixing trends were identified for a few of the samples as indicated by δ(15)NO3 and δ(18)ONO3 mixing ratios and were consistent with the study area's land-use/land-cover distribution. The combination of methods utilized in this study revealed that in some cases mass ratios were better diagnostics in elucidating the impact of denitrification, mixing processes, and source identification within dynamic aquifer systems than the dual-isotope technique.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Alabama , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis
12.
Ground Water ; 51(6): 893-903, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23373963

RESUMEN

Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age-dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ(13) C value (-17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ(18) O and δD values (-4.0 ± 0.1‰ VSMOW, n = 27; δD: -19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.


Asunto(s)
Agua Subterránea , Movimientos del Agua , Alabama , Cloruros/análisis , Isótopos/análisis , Nitratos/análisis , Medición de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA