Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38006125

RESUMEN

Structural fiber-reinforced polymer (FRP) composite materials consisting of a polymer matrix reinforced with layers of high-strength fibers are used in numerous applications, including but not limited to spacecraft, vehicles, buildings, and bridges. Researchers in the past few decades have suggested the necessary integration of sensors (e.g., fiber optic sensors) in polymer composites to enable health monitoring of composites' performance over their service lives. This work introduces an innovative cognizant composite that can self-sense, compute, and implement decisions based on sensed values. It is a critical step towards smart, resilient infrastructure. We describe a method to fabricate textile sensors with flexible circuitry and a microcontroller within the polymer composite, enabling computational operations to take place in the composite without impacting its integrity. A microstructural investigation of the sensors showed that the amount of oxidative agent and soaking time of the fabric play a major role in the adsorption of polypyrrole (PPy) on fiberglass (FG). XPS results showed that the 10 g ferric chloride solution with 6 h of soaking time had the highest degree of protonation (28%) and, therefore, higher adsorption of PPy on FG. A strain range of 30% was achieved by examining different circuitry and sensor designs for their resistance and strain resolution under mechanical loading. A microcontroller was added to the circuit and then embedded within a composite material. This composite system was tested under flexural loading to demonstrate its self-sensing, computing, and actuation capabilities. The resulting cognizant composite demonstrated the ability to read resistance values and measure strain using the embedded microcontroller and autonomously actuate an LED light when the strain exceeds a predefined limit of 2000 µÎµ. The application of the proposed FRP system would provide in situ monitoring of structural composite components with autonomous response capabilities, as well as reduce manufacturing, production, and maintenance costs.

2.
Polymers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771929

RESUMEN

Polymer concrete (PC) has been used to replace cement concrete when harsh service conditions exist. Polymers have a high carbon footprint when considering their life cycle analysis, and with increased climate change concerns and the need to reduce greenhouse gas emission, bio-based polymers could be used as a sustainable alternative binder to produce PC. This paper examines the development and characterization of a novel bio-polymer concrete (BPC) using bio-based polyurethane used as the binder in lieu of cement, modified with benzoic acid and carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs). The mechanical performance, durability, microstructure, and chemical properties of BPC are investigated. Moreover, the effect of the addition of benzoic acid and MWCNTs on the properties of BPC is studied. The new BPC shows relatively low density, appreciable compressive strength between 20-30 MPa, good tensile strength of 4 MPa, and excellent durability resistance against aggressive environments. The new BPC has a low carbon footprint, 50% lower than ordinary Portland cement concrete, and can provide a sustainable concrete alternative in infrastructural applications.

3.
Polymers (Basel) ; 14(1)2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35012198

RESUMEN

Textile reinforced concrete (TRC) has gained attention from the construction industry due to its light weight, high tensile strength, design flexibility, corrosion resistance, and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repair, waterproofing elements, and façades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. Premature debonding between the textile fabric and concrete due to improper cementitious matrix impregnation of the fibers was identified as a failure-governing mechanism. To overcome this performance limitation, in this study, a novel type of TRC is proposed by replacing the cement binder with a polymer resin to produce textile reinforced polymer concrete (TRPC). The new TRPC is created using a fine-graded aggregate, methyl methacrylate polymer resin, and basalt fiber textile fabric. Four different specimen configurations were manufactured by embedding 0, 1, 2, and 3 textile layers in concrete. Flexural performance was analyzed and compared with reference TRC specimens with similar compressive strength and reinforcement configurations. Furthermore, the crack pattern intensity was determined using an image processing technique to quantify the ductility of TRPC compared with conventional TRC. The new TRPC improved the moment capacity compared with TRC by 51%, 58%, 59%, and 158%, the deflection at peak load by 858%, 857%, 3264%, and 3803%, and the toughness by 1909%, 3844%, 2781%, and 4355% for 0, 1, 2, and 3 textile layers, respectively. TRPC showed significantly improved flexural capacity, superior ductility, and substantial plasticity compared with TRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA