Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Nano ; 11(8): 3574-3584, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39131542

RESUMEN

Anthropogenic contaminants can place significant stress on vegetation, especially when they are taken up into plants. Plastic pollution, including nanoplastics (NPs), could be detrimental to tree functioning, by causing, for example, oxidative stress or reducing photosynthesis. While a number of studies have explored the capacity of plants to take up NPs, few have simultaneously assessed the functional damage due to particulate matter uptake. To quantify NPs uptake by tree roots and to determine whether this resulted in subsequent physiological damage, we exposed the roots of two tree species with different water use strategies in hydroponic cultures to two concentrations (10 mg L-1 and 30 mg L-1) of model metal-doped polystyrene NPs. This approach allowed us to accurately quantify low concentrations of NPs in tissues using standard approaches for metal analysis. The two contrasting tree species included Norway spruce (Picea abies [L.] Karst), a water conservative tree, and wild service tree (Sorbus torminalis [L.] Crantz), an early successional tree with a rather water spending strategy. At both exposure concentrations and at each of the experimental time points (two and four weeks), NPs were highly associated and/or concentrated inside the tree roots. In both species, maximum concentrations were observed after 2 weeks in the roots of the high concentration (HC) treatment (spruce: 2512 ± 304 µg NPs per g DW (dry weight), wild service tree: 1190 ± 823 µg NPs per g DW). In the aboveground organs (stems and leaves or needles), concentrations were one to two orders of magnitude lower than in the roots. Despite relatively similar NPs concentrations in the tree aboveground organs across treatments, there were different temporal impacts on tree physiology of the given species. Photosynthetic efficiency was reduced faster (after 2 weeks of NPs exposure) and more intensively (by 28% in the HC treatment) in wild service trees compared to Norway spruce (ca. 10% reduction only after 4 weeks). Our study shows that both, evergreen coniferous as well as deciduous broadleaf tree species are negatively affected in their photosynthesis by NPs uptake and transport to aboveground organs. Given the likelihood of trees facing multiple, concurrent stressors from anthropogenic pollution and climate change, including the impact of NPs, it is crucial to consider the cumulative effects on vegetation in future.

2.
Tree Physiol ; 43(2): 262-276, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36226588

RESUMEN

Trees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.), are able to take up and transport differently charged gold nanoparticles (Au-NPs) into their stem by comparing leaf-to-root and root-to-leaf pathways. Au-NPs were taken up by roots and leaves, and a small fraction was transported to the stem in both species. Au-NPs were transported from leaves to roots but not vice versa. Leaf Au uptake was higher in beech than in pine, probably because of the higher stomatal density and wood characteristics of beech. Confocal (3D) analysis confirmed the presence of Au-NPs in trichomes and leaf blade, about 20-30 µm below the leaf surface in beech. Most Au-NPs likely penetrated into the stomatal openings through diffusion of Au-NPs as suggested by the 3D XRF scanning analysis. However, trichomes were probably involved in the uptake and internal immobilization of NPs, besides their ability to retain them on the leaf surface. The surface charge of Au-NPs may have played a role in their adhesion and uptake, but not in their transport to different tree compartments. Stomatal conductance did not influence the uptake of Au-NPs. This is the first study that shows nanoparticle uptake and transport in beech and pine, contributing to a better understanding of the interactions of NPs with different tree species.


Asunto(s)
Fagus , Nanopartículas del Metal , Pinus sylvestris , Pinus , Fagus/metabolismo , Oro/metabolismo , Árboles , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA