Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39091017

RESUMEN

Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA