Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 630, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872498

RESUMEN

Background Puccinia arachidis fungus causes rust disease in the peanut plants (Arachis hypogaea L.), which leads to high yield loss. Metabolomic profiling of Arachis hypogaea was performed to identify the pathogen-induced production of metabolites involved in the defense mechanism of peanut plants. In this study, two peanut genotypes, one susceptible (JL-24) and one resistant (GPBD-4) were inoculated with Puccinia arachidis fungal pathogen. The metabolic response was assessed at the control stage (0 day without inoculation), 2 DAI (Day after inoculation), 4 DAI and 6 DAI by Gas Chromatography-Mass Spectrometry (GC-MS). Results About 61 metabolites were identified by NIST library, comprising sugars, phenols, fatty acids, carboxylic acids and sugar alcohols. Sugars and fatty acids were predominant in leaf extracts compared to other metabolites. Concentration of different metabolites such as salicylic acid, mannitol, flavonoid, 9,12-octadecadienoic acid, linolenic acid and glucopyranoside were higher in resistant genotype than in susceptible genotype during infection. Systemic acquired resistance (SAR) and hypersensitive reaction (HR) components such as oxalic acid was elevated in resistant genotype during pathogen infection. Partial least square-discriminant analysis (PLS-DA) was applied to GC-MS data for revealing metabolites profile between resistant and susceptible genotype during infection. Conclusion The phenol content and oxidative enzyme activity i.e. catalase, peroxidase and polyphenol oxidase were found to be very high at 4 DAI in resistant genotype (p-value < 0.01). This metabolic approach provides information about bioactive plant metabolites and their application in crop protection and marker-assisted plant breeding.


Asunto(s)
Arachis , Fitomejoramiento , Arachis/metabolismo , Fitomejoramiento/métodos , Metaboloma , Ácidos Grasos/metabolismo , Azúcares/metabolismo
2.
Front Microbiol ; 12: 634753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815319

RESUMEN

A model aromatic compound, sodium benzoate, is generally used for simulating aromatic pollutants present in textile effluents. Bioremediation of sodium benzoate was studied using the most abundant bacteria, Pseudomonas citronellolis, isolated from the effluent treatment plants of South Gujarat, India. Multiple nutrients constituting the effluent in actual conditions are proposed to have interactive effects on biodegradation which needs to be analyzed strategically for successful field application of developed bioremediation process. Two explicitly different sets of fractional factorial designs were used to investigate the interactive influence of alternative carbon, nitrogen sources, and inorganic micronutrients on sodium benzoate degradation. The process was negatively influenced by the co-existence of other carbon sources and higher concentration of KH2PO4 whereas NH4Cl and MgSO4 exhibited positive effects. Optimized concentrations of NH4Cl, MgSO4, and KH2PO4 were found to be 0.35, 1.056, and 0.3 mg L-1 respectively by central composite designing. The negative effect of high amount of KH2PO4 could be ameliorated by increasing the amount of NH4Cl in the biodegradation milieu indicating the possibility of restoration of the degradation capability for sodium benzoate degradation in the presence of higher phosphate concentration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA