RESUMEN
Na,K-ATPase, an ion pump, has been shown to interact with other proteins in signaling complexes in cardiac myocytes, renal and glial cells, and several other cell types. Our previous in vivo studies indicated that intrahippocampal administration of ouabain (OUA), an inhibitor of Na,K-ATPase, induces NFκB activation, leading to an increase in mRNA levels of target genes of this transcription factor in the rat hippocampus. The present work investigated whether OUA can regulate NF-κB in primary cultured rat cerebellar cells. Cells were treated with different concentrations of OUA (1, 10 or 100 µM) for different periods of time (1, 2 and 4 h). OUA induced a time- and concentration-dependent activation of NFκB (peak of activation: 10 µM, 2 h), involving both p50/p65 and p50/p50 NFκB dimers. OUA (10 µM, 2 h) induced upregulation of tumor necrosis factor α (Tnf-α), interleukin-1ß (Il-1ß), and brain derived neurotrophic factor (Bdnf) mRNA levels. Both NFκB activation and gene expression activation induced by OUA (10 µM) were abolished when cells were pre-treated for 20 min with MK-801 (N-Methyl-D-Aspartate (NMDA) receptor antagonist), manumycin A (farnesyltransferase inhibitor), PP-1(Src-family tyrosine kinase inhibitor) and PD98059 (mitogen-activated protein kinase (MAPK) inhibitor). OUA (10 µM) alone or in the presence of MK-801, PP-1, PD98059 did not cause cell death or DNA fragmentation. These findings suggest that OUA activates NFκB by NMDA-Src-Ras-like protein through MAPK pathways in cultured cerebellar cells. This pathway may mediate an adaptive response in the central nervous system.
Asunto(s)
Cerebelo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , FN-kappa B/metabolismo , Ouabaína/farmacología , Receptores de N-Metil-D-Aspartato/agonistas , Transducción de Señal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-1beta , Ouabaína/antagonistas & inhibidores , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Cultivo Primario de Células , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-κB (NF-κB) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-κB binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-κB activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-κB, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-α (Tnf-α), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF-κB activation and increased NOS and α(2/3) -Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-κB activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-κB activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , FN-kappa B/metabolismo , Ouabaína/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Ensayo de Cambio de Movilidad Electroforética/métodos , Activación Enzimática/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , Masculino , N-Metilaspartato/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oligonucleótidos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Asunto(s)
Animales , Humanos , Encefalitis , Mediadores de Inflamación/metabolismo , Estrés Psicológico/complicaciones , /uso terapéutico , Encefalitis/tratamiento farmacológico , Encefalitis/etiología , Encefalitis/metabolismo , Interleucina-1/metabolismo , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Nitrosación/fisiología , Oxidación-Reducción , PPAR gamma/agonistas , Estrés Psicológico/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
Amyloid beta-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappaB (NF-kappaB), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappaB activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta1-40 (1 or 2 microM) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappaB (1 microM, 12 hr); both p50/p65 and p50/p50 NF-kappaB dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. A beta at 1 microM increased the expression of inhibitory protein I kappaB, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RT-PCR assays. Collectively, these findings suggest that A beta activates NF-kappaB by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , N-Metilaspartato/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Maleato de Dizocilpina/farmacología , Ensayo de Cambio de Movilidad Electroforética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnica del Anticuerpo Fluorescente , Expresión Génica/efectos de los fármacos , Immunoblotting , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , N-Metilaspartato/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacosRESUMEN
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARgamma, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFkappaB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-alpha also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-alpha activation and release, inhibitors of NFkappaB, specific inhibitors of iNOS and COX-2 activities and PPARgamma agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Asunto(s)
Encefalitis , Mediadores de Inflamación/metabolismo , Estrés Psicológico/complicaciones , Animales , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Encefalitis/tratamiento farmacológico , Encefalitis/etiología , Encefalitis/metabolismo , Humanos , Interleucina-1/metabolismo , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Nitrosación/fisiología , Oxidación-Reducción , PPAR gamma/agonistas , Estrés Psicológico/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibility to and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesion to the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.
Asunto(s)
Diabetes Mellitus/fisiopatología , Neutrófilos/metabolismo , Neutrófilos/fisiología , Animales , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/fisiopatología , Ratones , RatasRESUMEN
Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.