Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299693

RESUMEN

Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization options. In this study, bio-inspired hierarchical all-carbon structures comprising carbon nanotube (CNT) carpets covalently bonded to flexible carbon fabric have been investigated as a platform for cell growth and future tissue regeneration applications. CNTs are known to provide guidance for cell growth, but loose CNTs are susceptible to intracellular uptake and are suspected to cause in vitro and in vivo cytotoxicity. This risk is suppressed in these materials due to the covalent attachment of CNTs on a larger fabric, and the synergistic benefits of nanoscale and micro-macro scale architectures, as seen in natural biological materials, can be obtained. The structural durability, biocompatibility, tunable surface architecture, and ultra-high specific surface area of these materials make them attractive candidates for wound healing. In this study, investigations of cytotoxicity, skin cell proliferation, and cell migration were performed, and results indicate promise in both biocompatibility and directed cell growth. Moreover, these scaffolds provided cytoprotection against environmental stressors such as Ultraviolet B (UVB) rays. It was seen that cell growth could also be tailored through the control of CNT carpet height and surface wettability. These results support future promise in the design of hierarchical carbon scaffolds for strategic wound healing and tissue regeneration applications.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839090

RESUMEN

Advanced materials related to sensing, actuation, catalysis, and other functionalities for interactive devices depend on surface interactions and quantum effects in solids [...].

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296782

RESUMEN

Advanced catalysts are crucial for a wide range of chemical, pharmaceutical, energy, and environmental applications. They can reduce energy barriers and increase reaction rates for desirable transformations, making many critical large-scale processes feasible, eco-friendly, energy-efficient, and affordable. Advances in nanotechnology have ushered in a new era for heterogeneous catalysis. Nanoscale catalytic materials are known to surpass their conventional macro-sized counterparts in performance and precision, owing it to their ultra-high surface activities and unique size-dependent quantum properties. In water treatment, nanocatalysts can offer significant promise for novel and ecofriendly pollutant degradation technologies that can be tailored for customer-specific needs. In particular, nano-palladium catalysts have shown promise in degrading larger molecules, making them attractive for mitigating emerging contaminants. However, the applicability of nanomaterials, including nanocatalysts, in practical deployable and ecofriendly devices, is severely limited due to their easy proliferation into the service environment, which raises concerns of toxicity, material retrieval, reusability, and related cost and safety issues. To overcome this limitation, matrix-supported hybrid nanostructures, where nanocatalysts are integrated with other solids for stability and durability, can be employed. The interaction between the support and nanocatalysts becomes important in these materials and needs to be well investigated to better understand their physical, chemical, and catalytic behavior. This review paper presents an overview of recent studies on matrix-supported Pd-nanocatalysts and highlights some of the novel emerging concepts. The focus is on suitable approaches to integrate nanocatalysts in water treatment applications to mitigate emerging contaminants including halogenated molecules. The state-of-the-art supports for palladium nanocatalysts that can be deployed in water treatment systems are reviewed. In addition, research opportunities are emphasized to design robust, reusable, and ecofriendly nanocatalyst architecture.

4.
Sci Total Environ ; 766: 144109, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33418263

RESUMEN

A flexible, durable, and reusable nanocatalyst system was fabricated by anchoring palladium nanoparticles on carbon nanotube (CNT) carpets covalently attached to carbon cloth. These hierarchical hybrid materials were tested for catalytic degradation of triclosan (TCS), an emerging contaminant. Materials were characterized using scanning & transmission electron microscopy techniques (SEM and TEM), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS). The reaction kinetics was studied using HPLC and reaction pathways proposed based on LC-MS/GC-MS analyses. In the presence of hydrogen, complete step-wise chlorine removal was seen until complete dechlorination was accomplished. The pseudo-first-order rate constant was measured to be orders of magnitude higher than earlier reported values. Moreover, the same material was usable for multiple cycles in flowing water. This study demonstrates that robustness and reusability of larger structural materials can be combined with the ultra-high surface activity of nanocatalysts to provide practical and eco-friendly solutions for water sustainability.

5.
Mater Sci Eng C Mater Biol Appl ; 108: 110345, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31924041

RESUMEN

Carbon Nanotubes (CNTs) are known for effective adhesion, growth, and differentiation of bone, muscle, and cardiac cells. CNTs can provide excellent mechanical and electrical properties for cell scaffolding; however, loose CNTs can cause in-vivo toxicity. To suppress this risk, our team has developed biomimetic scaffolds with multiscale hierarchy where carpet-like CNT arrays are covalently bonded to larger biocompatible substrates. In this study, we investigated the interaction between glioblastoma multiforme (GBM) cells (U87MG) and our unique hierarchical CNT-coated scaffolds upon brain tumor cell proliferation. U87MG cells grown on un-modified carbon scaffolds grew in a bi-phasic fashion. Initially, the scaffolds prevented GBM cell growth; however, prolonged growth on such scaffolds significantly increased GBM cell proliferation. We further defined the importance of the hydrophobicity/hydrophilicity of the CNT-coated scaffolds in this cellular response by utilizing sodium-hypochlorite based bleach treatment prior to cellular exposure. This surface modification increased the hydrophilicity of the CNT-coated scaffolds and ameliorated the biphasic response of U87MG cells allowing for a normal growth curve. Findings highlight the importance of surface modification and wettability of the CNT-coated scaffolds for cell growth applications. The focus for this study was to determine whether scaffold surface features could modulate tumor-scaffold interactions, and thus to improve our understanding of and optimize successful development of future scaffold-based chemotherapy applications. Overall, it appears that the wettability of carbon scaffolds coated with CNTs is an important regulator of U87MG cellular growth. These findings will be important to consider when developing a potential chemotherapy-attached implant to be used post-surgical resection for GBM patient treatment.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos , Glioblastoma , Nanotubos de Carbono/química , Andamios del Tejido/química , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/terapia , Humanos
6.
Molecules ; 21(7)2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27455218

RESUMEN

Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea/química , Adsorción , Catálisis , Restauración y Remediación Ambiental/métodos , Filtración , Metales Pesados/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Tricloroetileno/química , Contaminantes Químicos del Agua/química , Contaminación Química del Agua
7.
Nanotechnology ; 27(14): 145603, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26916727

RESUMEN

The effectiveness of nanoparticle-based functional devices depends strongly on the surface morphology and area of the support. An emerging powerful approach of increasing the available surface area without decreasing strength or increasing bulk is to attach arrays of suitable nanotubes on the surface, and to attach the necessary nanoparticles to them. Earlier publications by this team have shown that carpet-like arrays of carbon nanotubes (CNTs) can be successfully grown on a variety of larger carbon substrates such as graphite, foams and fabric, which offer hierarchical multiscale supporting architecture suitable for the attachment of silver nanoparticles (AgNPs). A limiting factor of pure CNT arrays in fluid-based applications is their hydrophobicity, which can reduce the percolation of an aqueous medium through individual nanotubes. Previous studies have demonstrated that the treatment of CNT carpets with dry (oxygen) plasma can induce reversible wettability, and treatment with wet (sol-gel) coating can impart permanent wettability. In this paper, we report the influence of such treatments on the attachment of AgNPs, and their effectiveness in water disinfection treatments. Both types of hydrophilic surface treatment show an increase in silver loading on the CNT carpets. Oxygen-plasma treated surfaces (O-CNT) show fine and densely packed AgNPs, whereas silica-coated nanotubes (silica-CNT) show uneven clusters of AgNPs. However, O-CNT surfaces lose their hydrophilicity during AgNP deposition, whereas silica-CNT surfaces remain hydrophilic. This difference significantly impacts the antibacterial effectiveness of these materials, as tested in simulated water containing Gram negative Escherichia coli (E. coli, JM109). AgNPs on silica-coated CNT substrates showed significantly higher reduction rates of E. coli compared to AgNPs on plasma-treated CNT substrates, despite the finer and better dispersed AgNP distribution in the latter. These results provide important insights into different aspects of surface modification approaches that can control the wettability of CNT carpets, and their applicability in water treatment applications.


Asunto(s)
Antibacterianos/química , Escherichia coli/aislamiento & purificación , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Plata/química , Microbiología del Agua , Purificación del Agua/métodos , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/microbiología , Nanopartículas del Metal/ultraestructura , Nanotecnología/métodos , Nanotubos de Carbono/microbiología , Nanotubos de Carbono/ultraestructura , Oxígeno/química , Dióxido de Silicio/química , Plata/farmacología , Propiedades de Superficie
8.
Acta Biomater ; 32: 77-88, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26768231

RESUMEN

While several scaffolds have been proposed for skeletal muscle regeneration, multiscale hierarchical scaffolds with the complexity of extracellular matrix (ECM) haven't been engineered successfully. By precise control over nano- and microscale features, comprehensive understanding of the effect of multiple factors on skeletal muscle regeneration can be derived. In this study, we engineered carbon-based scaffolds with hierarchical nano- and microscale architecture with controlled physico-chemical properties. More specifically, we built multiscale hierarchy by growing carbon nanotube (CNT) carpets on two types of scaffolds, namely, interconnected microporous carbon foams and aligned carbon fiber mats. Nanostructured CNT carpets offered fine control over nano-roughness and wettability facilitating myoblast adhesion, growth and differentiation into myocytes. However, microporous foam architecture failed to promote their fusion into multinucleated myotubes. On the other hand, aligned fibrous architecture stimulated formation of multinucleated myotubes. Most importantly, nanostructured CNT carpets interfaced with microscale aligned fibrous architecture significantly enhanced myocyte fusion into multinucleated mature myotubes highlighting synergy between nanoscale surface features and micro-/macroscale aligned fibrous architecture in the process of myogenesis. STATEMENT OF SIGNIFICANCE: Due to limited regenerative potential of skeletal muscle, strategies stimulating regeneration of functional muscles are important. These strategies are aimed at promoting differentiation of progenitor cells (myoblasts) into multinucleated myotubes, a key initial step in functional muscle regeneration. Recent tissue engineering approaches utilize various scaffolds ranging from decellularized matrices to aligned biomaterial scaffolds. Although, majority of them have focused on nano- or microscale organization, a systematic approach to build the multiscale hierarchy into these scaffolds is lacking. Here, we engineered multiscale hierarchy into carbon-based materials and demonstrated that the nanoscale features govern the differentiation of individual myoblasts into myocytes whereas microscale alignment cues orchestrate fusion of multiple myocytes into multinucleated myotubes underlining the importance of multiscale hierarchy in enhancing coordinated tissue regeneration.


Asunto(s)
Diferenciación Celular , Mioblastos/citología , Nanotubos de Carbono/química , Andamios del Tejido/química , Animales , Adhesión Celular , Línea Celular , Proliferación Celular , Forma de la Célula , Ratones , Fibras Musculares Esqueléticas/citología , Mioblastos/metabolismo , Nanotubos de Carbono/ultraestructura , Humectabilidad
9.
Sensors (Basel) ; 12(6): 8135-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22969391

RESUMEN

This study examines the creation of a nano-featured biosensor platform designed for the rapid and selective detection of the bacterium Escherichia coli. The foundation of this sensor is carbon nanotubes decorated with gold nanoparticles that are modified with a specific, surface adherent ribonucleiuc acid (RNA) sequence element. The multi-step sensor assembly was accomplished by growing carbon nanotubes on a graphite substrate, the direct synthesis of gold nanoparticles on the nanotube surface, and the attachment of thiolated RNA to the bound nanoparticles. The application of the compounded nano-materials for sensor development has the distinct advantage of retaining the electrical behavior property of carbon nanotubes and, through the gold nanoparticles, incorporating an increased surface area for additional analyte attachment sites, thus increasing sensitivity. We successfully demonstrated that the coating of gold nanoparticles with a selective RNA sequence increased the capture of E. coli by 189% when compared to uncoated particles. The approach to sensor formation detailed in this study illustrates the great potential of unique composite structures in the development of a multi-array, electrochemical sensor for the fast and sensitive detection of pathogens.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli/aislamiento & purificación , Oro/química , Nanopartículas del Metal/química , Nanotubos de Carbono/química , ARN/metabolismo , Escherichia coli/ultraestructura , Nanopartículas del Metal/ultraestructura , Nanotubos de Carbono/ultraestructura , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA