Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Indian J Microbiol ; 64(3): 937-949, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282177

RESUMEN

A Gram-negative, short-rod, non-motile, facultatively anaerobic, potassium-solubilizing bacterium MR1 (Mine Rhizosphere) was isolated from rhizospheric soil of an open-cast coal mine of Jharia, Jharkhand, India. Isolate MR1 can grow in a broad range of temperature, pH, and NaCl concentrations. The 16S rRNA gene sequence of the strain showed 99.24% similarity with Pantoea septica LMG 5345T. However, maximum-likelihood tree constructed using 16S rRNA gene sequence, multilocus sequence analysis using concatenated sequences of ten housekeeping genes, whole-genome based phylogenetic reconstruction, digital DNA-DNA hybridization, and average nucleotide identity (ANIm and ANIb) values indicated segregation of MR1 from its closest relatives. Fatty acid profile of MR1 also suggested the same, with clear variation in major and minor fatty acid contents, having C13:0 anteiso (10-Methyldodecanoic acid) as the unique one. Thus, considering all polyphasic data, strain MR1T (= MTCC 13265T, where 'T' stands for Type strain) is presented as a novel species of the genus Pantoea, for which the name Pantoea tagorei sp. nov. is proposed. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01147-9.

2.
Extremophiles ; 24(6): 875-885, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32955600

RESUMEN

Inland athalassohaline solar salterns provide unique opportunity to study microbial successions along salinity gradients that resemble transition in natural hypersaline lakes. We analyzed for the first time 16S rRNA gene amplicon sequences of bacteria (V1-V2) and archaea (V4-V5) in saltern brines of India's largest inland hypersaline Sambhar Lake. Brines of the salterns (S1-S4) are alkaline (pH 9.5-10.5) with salinities of 130, 170, 280 and 350 gL-1 respectively. 16S rRNA gene copy-number of archaea outnumbered that of bacteria in all salterns. Their diversity also increased along S1 through S4, while that of bacteria decreased. Brines of S3 and S4 were dominated by specialized extreme halophilic bacterial (Halanaerobiales, Rhodothermaceae) and archaeal (Halobacteriales, Haloferacales) members with recognized salt-in strategy for osmoadaptation. Microbial assemblages positively correlated to saltern pH, total salinity, and ionic composition. Archaea in S1 and S2 were unprecedentedly represented by poorly known as-yet uncultivated groups, Woesearchaeota (90.35-93.51%) and Nanohaloarchaeota that belong to the newly proposed nano-sized superphylum DPANN. In fact, these taxa were identified in archaeal datasets of other athalassohaline salterns after re-analysis using latest RDP database. Thus, microbial compositions in hypersaline lakes are complex and need revisit particularly for their archaeal diversity to understand their hitherto unknown ecological function in extreme environments.


Asunto(s)
Lagos/microbiología , Microbiota , Filogenia , Aguas Salinas , Archaea/clasificación , Bacterias/clasificación , India , ARN Ribosómico 16S/genética , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA