Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 108(8): 2422-2434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38514442

RESUMEN

Anisogramma anomala, a biotrophic ascomycete, causes eastern filbert blight (EFB) of hazelnuts (Corylus spp.). EFB is endemic in eastern North America, preventing the commercial production of European hazelnut (C. avellana L.). In contrast, the historic absence of A. anomala in the Pacific Northwest (PNW) supported the development of a robust hazelnut industry. Circa 1960, A. anomala was inadvertently introduced into southwestern Washington, causing orchard devastation. Distribution of the pathogen in the PNW has been hypothesized to be the result of a single-point introduction. This study aimed to investigate the single-point introduction hypothesis of A. anomala by comparing the genetic diversity of A. anomala samples from the PNW and New Jersey (NJ). Specimens from the main PNW production region (n = 60) and an area within the pathogen's native range, NJ (n = 151), were genotyped using 15 simple sequence repeat (SSR) markers. The following were used to assess genetic diversity and population structure: allelic summary statistics, discriminant analysis of principal components, network median-joining tree, analysis of multilocus genotypes, and allelic population diversity analysis. Analyses separated the samples into one cluster containing all the PNW isolates, and five clusters of NJ isolates. The PNW samples were nearly genetically uniform, and the NJ isolates were diverse. These findings support the hypothesis that A. anomala in the PNW was derived from a single-point introduction and corroborate previous studies that have shown A. anomala is very diverse in NJ. This indicates that maintaining restrictions on the movement of Corylus into the PNW is important to prevent the introduction of new populations of A. anomala, thus protecting the PNW hazelnut industry.


Asunto(s)
Ascomicetos , Corylus , Variación Genética , Repeticiones de Microsatélite , Enfermedades de las Plantas , Corylus/microbiología , Enfermedades de las Plantas/microbiología , Repeticiones de Microsatélite/genética , New Jersey , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Genotipo , Noroeste de Estados Unidos , Alelos
2.
Phytopathology ; 109(6): 1074-1082, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30540554

RESUMEN

Anisogramma anomala, a biotrophic ascomycete in the order Diaporthales, causes eastern filbert blight (EFB) of hazelnuts (Corylus spp.). Until recently, little has been documented on its genetic diversity and population structure. In this study, 18 simple sequence repeat markers were used to fingerprint 182 accessions of the fungus originating from across North America. Our results, based on summary statistics of the allelic data, a discriminant analysis of principal components (DAPC) scatterplot, an unweighted pair group method with arithmetic mean (UPGMA) dendrogram, and analysis of multilocus genotypes, show that A. anomala exhibits considerable genetic diversity across multiple populations. Eleven clusters were resolved from the DAPC scatterplot, five of which were validated by statistically supported clusters in the UPGMA dendrogram. The 11 DAPC clusters were statistically significant via an analysis of molecular variance. Dendrogram topology and DAPC scatterplot groups showed some correlation with collection origin; samples collected in proximity tended to cluster together and be genetically similar. However, some locations held populations that were diverse and some populations with a high degree of similarity had disparate origins, suggesting movement by humans. Overall, the results demonstrate the presence of multiple, genetically distinct populations of A. anomala in North America and serve as a reference to assist in understanding and managing EFB.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Marcadores Genéticos , Variación Genética , Repeticiones de Microsatélite , América del Norte
3.
PLoS One ; 8(11): e82408, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312419

RESUMEN

High-throughput sequencing has been dramatically accelerating the discovery of microsatellite markers (also known as Simple Sequence Repeats). Both 454 and Illumina reads have been used directly in microsatellite discovery and primer design (the "Seq-to-SSR" approach). However, constraints of this approach include: 1) many microsatellite-containing reads do not have sufficient flanking sequences to allow primer design, and 2) difficulties in removing microsatellite loci residing in longer, repetitive regions. In the current study, we applied the novel "Seq-Assembly-SSR" approach to overcome these constraints in Anisogramma anomala. In our approach, Illumina reads were first assembled into a draft genome, and the latter was then used in microsatellite discovery. A. anomala is an obligate biotrophic ascomycete that causes eastern filbert blight disease of commercial European hazelnut. Little is known about its population structure or diversity. Approximately 26 M 146 bp Illumina reads were generated from a paired-end library of a fungal strain from Oregon. The reads were assembled into a draft genome of 333 Mb (excluding gaps), with contig N50 of 10,384 bp and scaffold N50 of 32,987 bp. A bioinformatics pipeline identified 46,677 microsatellite motifs at 44,247 loci, including 2,430 compound loci. Primers were successfully designed for 42,923 loci (97%). After removing 2,886 loci close to assembly gaps and 676 loci in repetitive regions, a genome-wide microsatellite database of 39,361 loci was generated for the fungus. In experimental screening of 236 loci using four geographically representative strains, 228 (96.6%) were successfully amplified and 214 (90.7%) produced single PCR products. Twenty-three (9.7%) were found to be perfect polymorphic loci. A small-scale population study using 11 polymorphic loci revealed considerable gene diversity. Clustering analysis grouped isolates of this fungus into two clades in accordance with their geographic origins. Thus, the "Seq-Assembly-SSR" approach has proven to be a successful one for microsatellite discovery.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico , Repeticiones de Microsatélite/genética , Bases de Datos Genéticas , Marcadores Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA