Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109905

RESUMEN

In this work, we present an experimental study of the primary and secondary relaxations of the semi-crystalline polymer polyethylene naphthalate by modulated differential scanning calorimetry, Thermally Stimulated Depolarization Currents (TSDCs), and Broadband Dielectric Spectroscopy (BDS) and how they are affected by physical aging. Three dipolar relaxation modes can be observed: from slowest to fastest: the primary α relaxation, which vitrifies at the glass transition temperature, Tgα, and two secondary relaxations, named ß* and ß. Modulated differential scanning calorimetry results show how the secondary ß* relaxation also vitrifies, giving rise to an additional glass transition at Tgß* < Tgα. In fact, the α and ß* relaxations can be considered as part of a very broad and distributed relaxation. Its main part is the primary α relaxation with a shoulder at the high-frequency region corresponding to a complex secondary ß* relaxation. BDS results about ß* can be modeled by a main contribution (ß3*) and two additional ones (ß1* and ß2*) with a weaker dielectric strength. TSDC results show that each single mode of the relaxation has its own glass transition temperature and they are compatible with the structure inferred by BDS. This scenario gives rise to an extended glass transition dually centered in the Tgß* ∼ 305 K and Tgα ∼ 387 K temperatures.

2.
ACS Omega ; 8(14): 12830-12841, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065057

RESUMEN

Ethylene propylene diene monomer (EPDM) is one of the most used polymers in the world. It is an elastomer, which means that the existing cross-linking between the main chains of the polymer created during the vulcanization process makes its recycling difficult. In this paper, a possible solution to this issue is studied. The devulcanization of EPDM is achieved by a thermomechanical process followed by microwave irradiation. These combined treatments suppress the cross-linking, yielding a material (EPDMd) that can be successfully blended to form composites. A common elastomer, styrene butadiene rubber (SBR), has been selected as the matrix. The new SBR/EPDMd composites can be useful as elastomeric dielectric materials and can contribute to the recycling of the discarded EPDM. To provide a better understanding of their microstructure and its relationship with their micro- and macroscopic behavior, samples containing 20 and 40% of EPDMd have been tested by thermogravimetric and dielectric analysis, focusing on variables such as the thermal properties of the blends, permittivity, electric modulus, conductivity, and activation energies. The results show interesting changes linked to the presence of EPDMd in the SBR matrix, such as the displacement of the ß dielectric relaxation toward higher frequencies. The correct integration between the two phases is confirmed by the absence of any Maxwell-Wagner-Sillars type relaxation in their dielectric behavior. The presence of additives in the EPDMd samples has an effect on the conductivity, mainly due to the conductive aluminum silicate present in the EPDMd, which acts toward increasing some key dielectric features like conductivity and permittivity and decreasing the insulation of the final SBR/EPDMd materials. The inclusion of EPDMd also affects the α relaxations (low frequencies) and suppresses the ß relaxations (high frequencies). The samples showed a non-Debye dielectric behavior. In short, a compact and well-integrated material with a dielectric behavior is created, which exhibits interesting differences from the reference SBR matrix. Finally, it is concluded that the compounds tested are suitable for applications as electrical insulators.

3.
Phys Rev E ; 106(5-1): 054702, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559473

RESUMEN

We have performed dielectric spectroscopy and thermally stimulated-depolarization-current experiments to study the molecular dynamics of the twist-bend nematic phase close to the glass transition of two members of the 1″,7'-bis(4-cyanobiphenyl-4'-yl)alkane homologous series (CBnCB): the liquid crystal (LC) dimers CB9CB and CB7CB, as well as a binary mixture of both. By doping CB9CB with a small quantity of CB7CB, the crystallization is inhibited when cooling the sample down, while the bulk properties of CB9CB are retained and we can investigate the supercooled behavior close to the glass transition. The study reveals that the inter- and intramolecular interactions of the mixture are similar to those of pure CB9CB and confirms that there is a single glass transition in symmetric LC dimers.

4.
Polymers (Basel) ; 13(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567684

RESUMEN

The recycling and disposal of disused tires is a topic of great concern to today's companies, researchers, and society in general. In this sense, our research aims to recycle end-of-life tires (GTRs) through the separation of the fraction of vulcanized rubber from the other compounds in order to later grind this fraction and separate it into lower particle sizes. Finally, we aim to incorporate these GTR particles as a filler of an ethylene-polyethylene-diene monomer (EPDM). The obtained composites with EPDM and GTR are tested (5%, 10%, 20%) comparing these values with neat EPDM as a control sample. Thermal tests such as differential calorimetry (DSC) and thermogravimetric analysis (TGA) as well as dielectric tests (DEA) are performed in order to characterize these materials and check their viability as dielectric or semiconductor, for industrial use. It is checked how the presence of GTR increases functional properties such as conductivity/permittivity. The influence of temperature (40 to 120 °C) and addition of GTR particles in electrical properties has also been analyzed. The dielectric behavior of these composites is fully characterized, analyzing the different types of relaxation with increasing frequency (10 mHz to 3 MHz), using the electric modulus, and Argand diagrams among other measures. The influence of GTR and temperature in the dielectric and thermal behavior of these materials has been analyzed, where CB of GTR creates interfacial polarization phenomena in the dielectric behavior of the composite and increases the permittivity (real and imaginary) as well as the conductivity. Finally, with these obtained properties, the possible application of EPDM/GTR composites as industrial dielectrics has been studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA