Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 64: 104879, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31806546

RESUMEN

While aluminum alloys are widely used in industrial applications, their protection by anodization as surface treatment always requires a preparation step by alkaline or acid etching. In this paper, use of ultrasound during the acid etching step on the 2024 aluminum alloy was investigated. Etching rate, calculated as of weight loss, was measured under ultrasound irradiation, and compared to silent conditions. The etched surface was characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS) and X-Ray Diffraction (XRD). Surface treatment was performed up to the final anodization step samples, and their final properties were evaluated as a function of various pre-treatments, including acid etching under ultrasound. The main evaluation concerned anticorrosion properties through electrochemical tests: polarization measurements and electrochemical impedance spectroscopy (EIS) in NaCl solution. Finally, use of ultrasound irradiation during acid preparation induced a beneficial effect on the corrosion performance of the anodic layer.

2.
Nanotechnology ; 28(15): 155703, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28303800

RESUMEN

Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.

3.
J Colloid Interface Sci ; 469: 57-62, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26866890

RESUMEN

Laser ablation of bulk target materials in liquids has been established as an alternative method for the synthesis of nanoparticles colloidal solutions mainly due to the fact that the synthesized nanoparticles have bare, ligand-free surfaces since no chemical precursors are used for their synthesis. InSb is a narrow band gap semiconductor which has the highest carrier mobility of any known semiconductor and nanoparticles of this material are useful in optoelectronic device fabrication. In this paper a bulk InSb target was ablated in deionized (DI) water or ethanol using a nanosecond (20 ns) or a femtosecond (90 fs) pulsed laser source, for nanoparticles synthesis. In all four cases the largest percentage of the nanoparticles are of InSb in the zincblende crystal structure with fcc lattice. Oxides of either In or Sb are also formed in the nanoparticles ensembles in the case of ns or fs ablation, respectively. Formation of an oxide of either element from the two elements of the binary bulk alloy is explained based on the difference in the ablation mechanism of the material in the case of ns or fs pulsed laser irradiation in which the slow or fast deposition of energy into the material results to mainly melting or vaporization, respectively under the present conditions of ablation, in combination with the lower melting point but higher vaporization enthalpy of In as compared to Sb. InSb in the metastable phase with orthorhombic lattice is also formed in the nanoparticles ensembles in the case of fs ablation in DI water (as well as oxide of InSb) which indicates that the synthesized nanoparticles exhibit polymorphism controlled by the type of the laser source used for their synthesis. The nanoparticles exhibit absorption which is observed to be extended in the infrared region of the spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA