Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 347: 123702, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432346

RESUMEN

The quantification of microplastic (MP) pollution in rivers is often constrained by a lack of historical data on a multi-decadal scale, which hinders the evaluation of public policies. In this study, MP contents and trends were analyzed in dated sediment cores sampled upstream and downstream of a large metropolis, in environmental deposits that exhibited consistent sedimentation patterns from the 1980s to 2021. After a thorough sedimentological analysis, MPs were quantified in samples by micro Fourier Transform InfraRed spectroscopy (µFTIR imaging) and a density separation and organic matter digestion procedure. Microplastics recorded in the upstream core are relatively ubiquitous all along the dated sequence. The results also confirmed a sever increase of microplastics levels in the downstream core, by one order of magnitude, and an increase of polymer types. Polypropylene, polyethylene, and polystyrene represent ubiquitous contamination and were predominant at the two stations, whereas polyvinyl chloride and polytetrafluoroethylene were suspected to be abundant at the downstream station, but were not detected at the upstream station. Their presence could be linked to local contamination from specific industrial sources that manufactured and utilized these polymers. Surprisingly, in the downstream station sediment has recorded a relative improvement in polymers associated with industrial sources since the 2000s and, to a lesser extent, for ubiquitous ones since the 2010s. This trend of mitigation diverges from that of global assessments, that assume uncontrolled MP pollution, and suggest that European Union wastewater policy and regulation on industrial discharges have positively influenced water quality, and certainly also on MPs. However, the accumulation of microplastics remains high in recent deposits and raises the emerging concern of the long-term management of these reservoirs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos
2.
Water Res ; 225: 119187, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215834

RESUMEN

Dam reservoirs can strongly influence the spatial distribution of sediment pollution by microplastics (MP). The Villerest reservoir (Loire River, 36 km long) is a good candidate to study the relationship between MP pollution and hydrosedimentary processes. Sediments were collected from the dam-controlled river section and from 3 km downstream. Geomorphological and sedimentological analyses were performed and microplastics were analysed using µFTIR imaging (polymer identification for particle sizes ≥ 25 µm). This paper highlights strong MP levels (on an order of 104 items/kg dw) over the section characterized by fine-grained sediments (FGS). In coarse-grained sediments (CGS), at the upstream part of the reservoir and downstream of the dam, levels are one order of magnitude lower. FGS are indicator of long-time settling processes. Such conditions lead to foster the MP trapping as low-density suspended materials in the water column. CGS deposits originate from the river bed load. These sediments are transported in high-velocity and high-turbulent flow conditions. Moreover, post-depositional reworking of the finest fraction can occur according to hydrofluctuations. Here are adverse conditions for the MP trapping. The polymer diversity is also higher in FGS than in CGS. However, the range of plastic particle sizes is similar in FGS and CGS and is not related to the sediment grain-size distribution. Moreover, in both FGS and CGS, the polymer abundance is not correlated with the grain-size distribution or with the organic matter content. In the reservoir context, a change in the polymer partition appears over the FGS section in the downstream direction, depending on the polymer density. From a fundamental point of view, this work contributes to improving our understanding of the key role played by hydrosedimentary processes in MP repartition. These findings also have operational scopes, providing significant elements to advocate for a better consideration of MP pollution during sediment management operations.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Sedimentos Geológicos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua/análisis
3.
J Environ Radioact ; 223-224: 106370, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32883536

RESUMEN

Tritium is a radioisotope of hydrogen with a half-life of 12.32 years and was used for its luminescent properties by the watchmaking industry from 1962 to the 2008. Tritiated luminescent salts were integrated in the paints applied on the index and dial of watches and clocks. French and Swiss watchmaking workshops used more than 28 000 TBq of tritium over this period of time and produced almost 350 million watches. Despite the end of tritiated salts use in watchmaking workshops in 1992 in France and 2008 in Switzerland, high level of organically bound tritium (OBT) are still observed in sediments of the Rhône River downstream the Lake Geneva. Contamination of the Rhône River by tritiated hot particles since 1962 up to nowadays remains poorly documented. In order to assess the long term behavior and fate of technogenic tritium in this river and its trajectories in the river system, two sediment cores were collected at the upstream (UC) and downstream (DC) part of the Rhône River in France and OBT contents were determined. For both sedimentary cores, maximum OBT contents were registered over the 1980s when tritium was intensively used by watchmaking industries. These residual OBT contents are 1 000 to 10 000 fold higher than current natural background levels in riverine sediments. The OBT contents progressively decreased since 1989 with close effective half-life in upstream and downstream area (5 ± 2 years). The OBT contents were lower in DC than in UC due to the dilution by uncontaminated sediments delivered by tributaries not affected by the watchmaking industries. Trajectories analysis indicates that the resiliency of the Rhône River system in regards to this contamination would be reached in 14-70 years and in 14-28 years respectively for the upstream and downstream part of the river.


Asunto(s)
Monitoreo de Radiación , Francia , Ríos , Suiza , Tritio/análisis , Contaminantes Radiactivos del Agua/análisis
4.
Environ Pollut ; 253: 1117-1125, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31434189

RESUMEN

Bed sediments and a dated sediment core were collected upstream and downstream from the city of Lyon (France) to assess the spatial and temporal trends of contamination by per- and polyfluoroalkyl substances (PFASs) in this section of the Rhône River. Upstream from Lyon, concentrations of total PFASs (ΣPFASs) in sediments are low (between 0.19 and 2.6 ng g-1 dry weight - dw), being characterized by a high proportion of perfluorooctane sulfonate (PFOS). Downstream from Lyon, and also from a fluoropolymer manufacturing plant, ΣPFASs concentrations reach 48.7 ng g-1 dw. A gradual decrease of concentrations is reported at the coring site further downstream (38 km). Based on a dated sediment core, the temporal evolution of PFASs is reconstructed from 1984 to 2013. Prior to 1987, ΣPFASs concentrations were low (≤2 ng g-1 dw), increasing to a maximum of 51 ng g-1 dw in the 1990s and then decreasing from 2002 to the present day (∼10 ng g-1 dw). In terms of the PFAS pattern, the proportion of perfluoroalkyl sulfonic acids (PFSAs) has remained stable since the 1980s (∼10%), whereas large variations are reported for carboxylic acids (PFCAs). Long chain- (C > 8) PFCAs characterized by an even number of perfluorinated carbons represent about 74% of the total PFAS load until 2005. However, from 2005 to 2013, the relative contribution of long chain- (C > 8) PFCAs with an odd number of perfluorinated carbons reaches 80%. Such changes in the PFAS pattern likely highlight a major shift in the industrial production process. This spatial and retrospective study provides valuable insights into the long-term contamination patterns of PFAS chemicals in river basins impacted by both urban and industrial activities.


Asunto(s)
Monitoreo del Ambiente , Fluorocarburos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Ácidos Alcanesulfónicos , Ácidos Carboxílicos , Francia , Instalaciones Industriales y de Fabricación , Estudios Retrospectivos , Ríos/química , Ácidos Sulfónicos/análisis
5.
Water Sci Technol ; 68(12): 2576-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24355843

RESUMEN

Infiltration basins are widely used in urban environments as a technique for managing and reducing the volume of stormwater. These basins can be spontaneously colonized by wild plants, which can be used as bioindicators of edaphic characteristics. As the basins are anthropogenic environments, the description of plant biodiversity allows the determination of which species colonize such environments and identification of the relationships between plants, basin type and operation. Nineteen infiltration basins were selected according to their catchment types (industrial, urban, agricultural). The dominant species were identified and sampled. Rumex sp., Taraxacum sp. and Artemisia sp. are the three types most represented (88, 61 and 55% respectively of the basins studied). Their families and their respective orders are those most commonly found (Caryophyllales, Asterales and Polygonaceae, Asteraceae). Poaceae is the family grouping with the largest number of different species (11). Although each species occupies only 1 or 2 basins, plants of this family occupy 61% of the basins. Although the catchment characteristics of the 19 basins do not play a direct role in the diversity of plant families, they can influence the presence or absence of certain species. Thus, these plants can be used as bio-indicators of basin soil and operating characteristics, such as sediment depths, inundation frequency and duration.


Asunto(s)
Artemisia/crecimiento & desarrollo , Sedimentos Geológicos/química , Lluvia , Rumex/crecimiento & desarrollo , Suelo/química , Taraxacum/crecimiento & desarrollo , Biodiversidad , Monitoreo del Ambiente , Filtración , Francia , Densidad de Población , Abastecimiento de Agua , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA