Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(13): 135101, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36206419

RESUMEN

Electromagnetic ion cyclotron waves are expected to pitch-angle scatter and cause atmospheric precipitation of relativistic (>1 MeV) electrons under typical conditions in Earth's radiation belts. However, it has been a long-standing mystery how relativistic electrons in the hundreds of keV range (but <1 MeV), which are not resonant with these waves, precipitate simultaneously with those >1 MeV. We demonstrate that, when the wave packets are short, nonresonant interactions enable such scattering of hundred-keV electrons by introducing a spread in wave number space. We generalize the quasilinear diffusion model to include nonresonant effects. The resultant model exhibits an exponential decay of the scattering rates extending below the minimum resonant energy depending on the shortness of the wave packets. This generalized model naturally explains observed nonresonant electron precipitation in the hundreds of keV concurrent with >1 MeV precipitation.

2.
Nat Commun ; 13(1): 1611, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338136

RESUMEN

Energetic electron precipitation from Earth's outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt's energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA