Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microscopy (Oxf) ; 65(3): 243-52, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26884617

RESUMEN

In this study, new microscopy techniques were developed for understanding the mechanism for the bainitic transformation in a Cu-17Al-11Mn (at%) alloy. An orthogonally arranged focused ion beam and a scanning electron microscope were employed to observe three-dimensional (3D) morphology of the bainite phase, in addition to compositional analysis by using a scanning transmission electron microscope equipped with a double-detector energy-dispersive X-ray spectrometer system. The 3D morphology of these samples was observed at different aging times and aging temperatures; the results obtained indicated that with increasing aging time and/or aging temperature, the bainite phase at the initial stage of formation exhibits a plate-like shape, which changes to a lenticular form. A habit plane was uniquely determined as ∼{9 3 2} by the combination of 3D image reconstruction and an electron back-scattered diffraction technique. The compositional analysis revealed the spatial distribution of the compositional variation between the bainite and matrix phases in the initial stages of the transformation. In the bainite phase, the Cu concentration was higher, while the concentrations of Al and Mn were lower than those in the surrounding matrix, indicative of the diffusion of the constituent elements with the growth of the bainite phase.

2.
Microscopy (Oxf) ; 65(2): 159-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26603981

RESUMEN

To understand the bainitic transformation behavior in Cu-17Al-11Mn (at.%) alloys, dynamicin situobservation during heating was carried out in a scanning electron microscope (SEM). In this study, after optimizing the sample preparation method and observation conditions, we successfully observed the transformation process with sufficient resolution and contrast. From the observation results, bainite is first formed preferentially at the grain boundaries of the parent phase. Bainite is also formed inside the grains to relax the elastic strain generated by the initial bainite. Regarding the growth mode, in the early stage of the transformation, bainite grows along the longitudinal direction, and in the late stage, it grows along the lateral direction. The growth rate of the bainite was also evaluated by continuous observation of the same plate. Dynamicin situobservation of a martensitic transformation in the same alloy was also performed to compare the growth mode with that of bainite, and it was found that the behavior is considerably different between bainitic and the martensitic transformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA