Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(9): e0203666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30212558

RESUMEN

The nature of species distribution boundaries is a key subject in ecology and evolution. Edge populations are potentially more exposed to climate-related environmental pressures. Despite research efforts, little is known about variability in fitness-related traits in leading (i.e., colder, high latitude) versus trailing (i.e., warmer, low latitude) edge populations. We tested whether the resilience, i.e. the resistance and recovery, of key traits differs between a distributional cold (Greenland) and warm (Portugal) range edge population of two foundation marine macrophytes, the intertidal macroalga Fucus vesiculosus and the subtidal seagrass Zostera marina. The resistance and recovery of edge populations to elevated seawater temperatures was compared under common experimental conditions using photosynthetic efficiency and expression of heat shock proteins (HSP). Cold and warm edge populations differed in their response, but this was species specific. The warm edge population of F. vesiculosus showed higher thermal resistance and recovery whereas the cold leading edge was less tolerant. The opposite was observed in Z. marina, with reduced recovery at the warm edge, while the cold edge was not markedly affected by warming. Our results confirm that differentiation of thermal stress responses can occur between leading and trailing edges, but such responses depend on local population traits and are thus not predictable just based on thermal pressures.


Asunto(s)
Fucus/crecimiento & desarrollo , Zosteraceae/crecimiento & desarrollo , Proteínas Algáceas/metabolismo , Fucus/metabolismo , Expresión Génica , Groenlandia , Proteínas de Choque Térmico/metabolismo , Fotosíntesis/fisiología , Portugal , Estrés Fisiológico , Temperatura , Zosteraceae/metabolismo
2.
BMC Genomics ; 14: 294, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23634783

RESUMEN

BACKGROUND: The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious - hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. RESULTS: Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. CONCLUSIONS: Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant heterogametic animal models. This work identifies an annotated set of F. vesiculosus gene products that potentially regulate sexual reproduction and may contribute to prezygotic isolation, one essential step towards developing tools for a functional understanding of species isolation and differentiation.


Asunto(s)
Proteínas Algáceas/biosíntesis , Fucus/genética , Fucus/fisiología , Expresión Génica , Sesgo , Evolución Molecular , Fucus/metabolismo , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Reproducción , Transcriptoma
3.
BMC Evol Biol ; 11: 371, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22188734

RESUMEN

BACKGROUND: Understanding the processes driving speciation in marine ecosystems remained a challenge until recently, due to the unclear nature of dispersal boundaries. However, recent evidence for marine adaptive radiations and ecological speciation, as well as previously undetected patterns of cryptic speciation is overturning this view. Here, we use multi-gene phylogenetics to infer the family-level evolutionary history of Fucaceae (intertidal brown algae of the northern Pacific and Atlantic) in order to investigate recent and unique patterns of radiative speciation in the genus Fucus in the Atlantic, in contrast with the mainly monospecific extant genera. RESULTS: We developed a set of markers from 13 protein coding genes based on polymorphic cDNA from EST libraries, which provided novel resolution allowing estimation of ancestral character states and a detailed reconstruction of the recent radiative history. Phylogenetic reconstructions yielded similar topologies and revealed four independent trans-Arctic colonization events by Fucaceae lineages, two of which also involved transitions from hermaphroditism to dioecy associated with Atlantic invasions. More recently, reversion of dioecious ancestral lineages towards hermaphroditism has occurred in the genus Fucus, particularly coinciding with colonization of more extreme habitats. Novel lineages in the genus Fucus were also revealed in association with southern habitats. These most recent speciation events occurred during the Pleistocene glaciations and coincided with a shift towards selfing mating systems, generally southward shifts in distribution, and invasion of novel habitats. CONCLUSIONS: Diversification of the family occurred in the Late-Mid Miocene, with at least four independent trans-Artic lineage crossings coincident with two reproductive mode transitions. The genus Fucus arose in the Pliocene but radiated within a relatively short time frame about 2.5 million years ago. Current species distributions of Fucus suggest that climatic factors promoted differentiation between the two major clades, while the recent and rapid species radiation in the temperate clade during Pleistocene glacial cycles coincided with several potential speciation drivers.


Asunto(s)
Especiación Genética , Phaeophyceae/clasificación , Filogenia , Teorema de Bayes , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Phaeophyceae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA