Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 102(8): e25370, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39158105

RESUMEN

Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.


Asunto(s)
Lipopolisacáridos , Trastornos de la Memoria , Enfermedades Neuroinflamatorias , Condicionamiento Físico Animal , Ratas Wistar , Animales , Masculino , Lipopolisacáridos/toxicidad , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Ratas , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Entrenamiento de Fuerza/métodos , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Receptor Muscarínico M1/metabolismo
2.
Neurotoxicology ; 99: 217-225, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890558

RESUMEN

Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1ß, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.


Asunto(s)
Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/toxicidad , 5'-Nucleotidasa/metabolismo , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ejercicio Físico , Caspasas/metabolismo , Receptores Purinérgicos P2X7/metabolismo
3.
J Immunol Res ; 2021: 2695490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33532505

RESUMEN

Aluminum (Al) is ubiquitously present in the environment and known to be a neurotoxin for humans. The trivalent free Al anion (Al3+) can cross the blood-brain barrier (BBB), accumulate in the brain, and elicit harmful effects to the central nervous system (CNS) cells. Thus, evidence has suggested that Al increases the risk of developing neurodegenerative diseases, particularly Alzheimer's disease (AD). Purinergic signaling has been shown to play a role in several neurological conditions as it can modulate the functioning of several cell types, such as microglial cells, the main resident immune cells of the CNS. However, Al effects on microglial cells and the role of the purinergic system remain elusive. Based on this background, this study is aimed at assessing the modulation of Al on purinergic system parameters of microglial cells. An in vitro study was performed using brain microglial cells exposed to Al chloride (AlCl3) and lipopolysaccharide (LPS) for 96 h. The uptake of Al, metabolism of nucleotides (ATP, ADP, and AMP) and nucleoside (adenosine), and the gene expression and protein density of purinoceptors were investigated. The results showed that both Al and LPS increased the breakdown of adenosine, whereas they decreased nucleotide hydrolysis. Furthermore, the findings revealed that both Al and LPS triggered an increase in gene expression and protein density of P2X7R and A2AR receptors, whereas reduced the A1R receptor expression and density. Taken together, the results showed that Al and LPS altered the setup of the purinergic system of microglial cells. Thus, this study provides new insights into the involvement of the purinergic system in the mechanisms underlying Al toxicity in microglial cells.


Asunto(s)
Aluminio/efectos adversos , Microglía/efectos de los fármacos , Microglía/metabolismo , Receptores Purinérgicos/metabolismo , Animales , Biomarcadores , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Lipopolisacáridos/inmunología , Ratones , Microglía/inmunología , Receptores Purinérgicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA