Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rep Pract Oncol Radiother ; 26(4): 545-552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434570

RESUMEN

BACKGROUND: Setup accuracy within adjuvant radiotherapy of breast cancer treated in free breathing is well studied, but a comparison of the typical regions of interest (ROI) used in surface guided radiation therapy (SGRT) does not exist. The aim of this study was to estimate the setup accuracy obtained with differently shaped ROIs in SGRT. MATERIALS AND METHODS: A total of 573 orthogonal image pairs were analyzed from free breathing breast patients in two groups: positioning using AlignRT® surface guidance system (Group A, n = 20), and setup using conventional laser and tattoo setup (Group L, n = 20). For SGRT, three different setup ROIs were used: a Breast-shaped, O-shaped and T-shaped (B-O and T-ROI). We evaluated the isocenter-, rotation-, pitch and arm position accuracy and residual errors for the chest wall and shoulder joint in kV orthogonal and tangential setup images with laser- or SGRT-based setup. RESULTS: Less isocenter variance was found in Group A than in Group L. Rotations and posture errors were larger in group L than in Group A (p ≤ 0.05). Rotation error was smaller with T-shaped ROI than with O- or B-shape (p = 0.01-0.04). CONCLUSION: Setup with AlignRT® improves reproducibility compared to laser setup. Between the different ROI shapes only small differences were found in the patient posture or the isocenter position in the images. The T-ROI is recommended to set up the chest wall bony structure and an additional B-ROI may be used to fine-tune the soft tissue accuracy.

3.
Int J Radiat Oncol Biol Phys ; 85(3): 846-53, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22749634

RESUMEN

PURPOSE: To evaluate the clinical suitability of a specific optical surface imaging system to detect setup errors in fractionated radiation therapy. METHODS AND MATERIALS: The setup correction accuracy of a 3-dimensional laser imaging system was analyzed for 6 different tumor locations with 20 patients each. For each patient, the setup corrections of the megavoltage computed tomography (MVCT) images of a TomoTherapy unit (TomoTherapy, Madison, WI) were compared with those of the laser system for the first 10 fractions. For the laser system, the reference surface either was obtained from the DICOM (Digital Imaging and Communications in Medicine) surface structure delineated on the planning computed tomography images or was acquired with the system itself at the first fraction after the MVCT-based setup correction. Data analysis was performed for both reference types. RESULTS: By use of the DICOM reference image, systematic shifts between 3 and 9 mm were found, depending on the tumor location. For the optical reference, no clinically relevant systematic shifts were found. MVCT-based setup corrections were detected with high accuracy, and only small movements were observed during treatment. CONCLUSIONS: Using a reference image acquired with the laser system itself after MVCT-based setup correction appears more reliable than importing the DICOM reference surface. After generation of the optical reference, the laser system may be used to derive setup corrections over a certain number of fractions, but additional radiologic imaging may still be necessary on a regular basis (eg, weekly) or if the corrections of the optical system appear implausibly large. Nevertheless, such a combined application may help to reduce the imaging dose for the patient.


Asunto(s)
Imagenología Tridimensional/instrumentación , Rayos Láser , Errores de Configuración en Radioterapia/prevención & control , Radioterapia Guiada por Imagen/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Adulto , Anciano , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional , Radioterapia Guiada por Imagen/métodos , Estándares de Referencia , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
4.
Phys Med ; 27(4): 224-32, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21055989

RESUMEN

In conformal radiotherapy, careful setup of the patient and setup verification prior to irradiation is essential. The technical performance of a commercial 3D-surface imaging system (Galaxy, LAP Laser, Lüneburg, Germany) for patient setup correction was evaluated. The system reconstructs a 3D-surface model by scanning the patient with a laser line while a camera records its reflections. This surface model is then compared with a reference model and a setup correction with 6 degrees of freedom is derived. The calibration stability of the system was investigated using the daily check phantom of the manufacturer. The accuracy and reproducibility of the system were investigated with an anthropomorphic phantom by performing 1D- and 3D-shifts with and without breathing of the phantom, respectively. In addition, measurements in a healthy volunteer were performed. With a few exceptions, the day-by-day variations of the calibration were <0.5mm in LAT and LNG direction and <1.5mm in VRT direction, respectively. Besides day-by-day variations, also baseline-shifts of up to 3mm were observed. The lowest observed accuracy of the system in detecting pre-defined shifts of the rigid phantom was found in lateral direction. Here, mean deviations of -0.15 ± 0.46 mm for 1D-shifts and -0.12 ± 0.26 mm for 3D-shifts were found. For the ventilated phantom, the lowest observed accuracy was found in vertical direction with mean deviations of 1.16 ± 0.6mm for 1D-shifts and -0.45 ± 0.57 mm for 3D-shifts. In a healthy volunteer, the accuracy was lowest in longitudinal direction with 1.7 ± 1.5mm. The overall technical accuracy of the surface imaging system can be considered to be acceptable for application in fractionated radiotherapy. For special radiotherapy techniques such as SBRT, an increased accuracy might be necessary. To define the clinical role of the system, patient studies for different target locations are required.


Asunto(s)
Imagenología Tridimensional/instrumentación , Rayos Láser , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/instrumentación , Humanos , Posicionamiento del Paciente , Radioterapia Conformacional , Reproducibilidad de los Resultados
5.
Int J Radiat Oncol Biol Phys ; 73(3): 919-26, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19215826

RESUMEN

PURPOSE: Four-dimensional (4D) imaging is a key to motion-adapted radiotherapy of lung tumors. We evaluated in a ventilated ex vivo system how size and displacement of artificial pulmonary nodules are reproduced with helical 4D-CT, 4D-MRI, and linac-integrated cone beam CT (CBCT). METHODS AND MATERIALS: Four porcine lungs with 18 agarose nodules (mean diameters 1.3-1.9 cm), were ventilated inside a chest phantom at 8/min and subject to 4D-CT (collimation 24 x 1.2 mm, pitch 0.1, slice/increment 24 x 10(2)/1.5/0.8 mm, pitch 0.1, temporal resolution 0.5 s), 4D-MRI (echo-shared dynamic three-dimensional-flash; repetition/echo time 2.13/0.72 ms, voxel size 2.7 x 2.7 x 4.0 mm, temporal resolution 1.4 s) and linac-integrated 4D-CBCT (720 projections, 3-min rotation, temporal resolution approximately 1 s). Static CT without respiration served as control. Three observers recorded lesion size (RECIST-diameters x/y/z) and axial displacement. Interobserver- and interphase-variation coefficients (IO/IP VC) of measurements indicated reproducibility. RESULTS: Mean x/y/z lesion diameters in cm were equal on static and dynamic CT (1.88/1.87; 1.30/1.39; 1.71/1.73; p > 0.05), but appeared larger on MRI and CBCT (2.06/1.95 [p < 0.05 vs. CT]; 1.47/1.28 [MRI vs. CT/CBCT p < 0.05]; 1.86/1.83 [CT vs. CBCT p < 0.05]). Interobserver-VC for lesion sizes were 2.54-4.47% (CT), 2.29-4.48% (4D-CT); 5.44-6.22% (MRI) and 4.86-6.97% (CBCT). Interphase-VC for lesion sizes ranged from 2.28% (4D-CT) to 10.0% (CBCT). Mean displacement in cm decreased from static CT (1.65) to 4D-CT (1.40), CBCT (1.23) and MRI (1.16). CONCLUSIONS: Lesion sizes are exactly reproduced with 4D-CT but overestimated on 4D-MRI and CBCT with a larger variability due to limited temporal and spatial resolution. All 4D-modalities underestimate lesion displacement.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Movimiento , Nódulos Pulmonares Múltiples , Respiración , Animales , Tomografía Computarizada de Haz Cónico/métodos , Diseño de Equipo , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Imagen por Resonancia Magnética/métodos , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulos Pulmonares Múltiples/patología , Variaciones Dependientes del Observador , Aceleradores de Partículas , Fantasmas de Imagen , Reproducibilidad de los Resultados , Porcinos , Tomografía Computarizada Espiral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA