Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7: 42448, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181584

RESUMEN

The ecological success of social insects is frequently ascribed to improvements in task performance due to division of labour amongst workers. While much research has focused on improvements associated with lifetime task specialization, members of colonies can specialize on a given task over shorter time periods. Eusocial bees in particular must collect pollen and nectar rewards to survive, but most workers appear to mix collection of both rewards over their lifetimes. We asked whether bumblebees specialize over timescales shorter than their lifetime. We also explored factors that govern such patterns, and asked whether reward specialists made more foraging bouts than generalists. In particular, we described antennal morphology and size of all foragers in a single colony and related these factors to each forager's complete foraging history, obtained using radio frequency identification (RFID). Only a small proportion of foragers were lifetime specialists; nevertheless, >50% of foragers specialized daily on a given reward. Contrary to expectations, daily and lifetime reward specialists were not better foragers (being neither larger nor making more bouts); larger bees with more antennal olfactory sensilla made more bouts, but were not more specialized. We discuss causes and functions of short and long-term patterns of specialization for bumblebee colonies.


Asunto(s)
Abejas , Conducta Alimentaria , Néctar de las Plantas , Polen , Animales , Abejas/anatomía & histología , Abejas/fisiología , Abejas/ultraestructura , Dispositivo de Identificación por Radiofrecuencia
2.
J Appl Ecol ; 53(5): 1440-1449, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27867216

RESUMEN

The ability to forage and return home is essential to the success of bees as both foragers and pollinators. Pesticide exposure may cause behavioural changes that interfere with these processes, with consequences for colony persistence and delivery of pollination services.We investigated the impact of chronic exposure (5-43 days) to field-realistic levels of a neonicotinoid insecticide (2·4 ppb thiamethoxam) on foraging ability, homing success and colony size using radio frequency identification (RFID) technology in free-flying bumblebee colonies.Individual foragers from pesticide-exposed colonies carried out longer foraging bouts than untreated controls (68 vs. 55 min). Pesticide-exposed bees also brought back pollen less frequently than controls indicating reduced foraging performance.A higher proportion of bees from pesticide-exposed colonies returned when released 1 km from their nests; this is potentially related to increased orientation experience during longer foraging bouts. We measured no impact of pesticide exposure on homing ability for bees released from 2 km, or when data were analysed overall.Despite a trend for control colonies to produce more new workers earlier, we found no overall impacts of pesticide exposure on whole colony size. Synthesis and applications. This study shows that field-realistic neonicotinoid exposure can have impacts on both foraging ability and homing success of bumblebees, with implications for the success of bumblebee colonies in agricultural landscapes and their ability to deliver crucial pollination services. Pesticide risk assessments should include bee species other than honeybees and assess a range of behaviours to elucidate the impact of sublethal effects. This has relevance for reviews of neonicotinoid risk assessment and usage policy world-wide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA