Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39236135

RESUMEN

Low-dose computed tomography (LDCT) offers reduced X-ray radiation exposure but at the cost of compromised image quality, characterized by increased noise and artifacts. Recently, transformer models emerged as a promising avenue to enhance LDCT image quality. However, the success of such models relies on a large amount of paired noisy and clean images, which are often scarce in clinical settings. In computer vision and natural language processing, masked autoencoders (MAE) have been recognized as a powerful self-pretraining method for transformers, due to their exceptional capability to extract representative features. However, the original pretraining and fine-tuning design fails to work in low-level vision tasks like denoising. In response to this challenge, we redesign the classical encoder-decoder learning model and facilitate a simple yet effective streamlined low-level vision MAE, referred to as LoMAE, tailored to address the LDCT denoising problem. Moreover, we introduce an MAE-GradCAM method to shed light on the latent learning mechanisms of the MAE/LoMAE. Additionally, we explore the LoMAE's robustness and generability across a variety of noise levels. Experimental findings show that the proposed LoMAE enhances the denoising capabilities of the transformer and substantially reduce their dependency on high-quality, ground-truth data. It also demonstrates remarkable robustness and generalizability over a spectrum of noise levels. In summary, the proposed LoMAE provides promising solutions to the major issues in LDCT including interpretability, ground truth data dependency, and model robustness/generalizability.

2.
J Digit Imaging ; 36(6): 2602-2612, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37532925

RESUMEN

Breast cancer is the second most common cancer among women worldwide, and the diagnosis by pathologists is a time-consuming procedure and subjective. Computer-aided diagnosis frameworks are utilized to relieve pathologist workload by classifying the data automatically, in which deep convolutional neural networks (CNNs) are effective solutions. The features extracted from the activation layer of pre-trained CNNs are called deep convolutional activation features (DeCAF). In this paper, we have analyzed that all DeCAF features are not necessarily led to higher accuracy in the classification task and dimension reduction plays an important role. We have proposed reduced DeCAF (R-DeCAF) for this purpose, and different dimension reduction methods are applied to achieve an effective combination of features by capturing the essence of DeCAF features. This framework uses pre-trained CNNs such as AlexNet, VGG-16, and VGG-19 as feature extractors in transfer learning mode. The DeCAF features are extracted from the first fully connected layer of the mentioned CNNs, and a support vector machine is used for classification. Among linear and nonlinear dimensionality reduction algorithms, linear approaches such as principal component analysis (PCA) represent a better combination among deep features and lead to higher accuracy in the classification task using a small number of features considering a specific amount of cumulative explained variance (CEV) of features. The proposed method is validated using experimental BreakHis and ICIAR datasets. Comprehensive results show improvement in the classification accuracy up to 4.3% with a feature vector size (FVS) of 23 and CEV equal to 0.15.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Redes Neurales de la Computación , Algoritmos , Diagnóstico por Computador , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA