Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37627690

RESUMEN

In this study, we sought to profile the abundances and drivers of antibiotic resistance genes in an urban river impacted by combined sewage overflow (CSO) events. Water samples were collected weekly during the summer for two years; then, quantitative PCR was applied to determine the abundance of resistance genes associated with tetracycline, quinolones, and ß-lactam antibiotics. In addition to sampling a CSO-impacted site near the city center, we also sampled a less urban site ~12 km upstream with no proximal sewage inputs. The tetracycline genes tetO and tetW were rarely found upstream, but were common at the CSO-impacted site, suggesting that the primary source was untreated sewage. In contrast, ampC was detected in all samples indicating a more consistent and diffuse source. The two other genes, qnrA and blaTEM, were present in only 40-50% of samples and showed more nuanced spatiotemporal patterns consistent with upstream agricultural inputs. The results of this study highlight the complex sources of ARGs in urban riverine ecosystems, and that interdisciplinary collaborations across diverse groups of stakeholders are necessary to combat the emerging threat of antibiotic resistance through anthropogenic pollution.

2.
Glob Chang Biol ; 20(4): 1351-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24307658

RESUMEN

Climate change-associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0-2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C : N, but unrelated to the other studied environmental parameters (pH, redox, and above- and below-ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon-degrading extracellular enzymes (ß-1, 4-glucosidase, 1, 4-ß-cellobiosidase, ß-D-xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate-limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T-RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4-ß-cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates in low salinity wetlands, and suggests that these ecosystems may experience decreased soil OM accumulation, accretion, and carbon sequestration rates even with modest levels of saltwater intrusion.


Asunto(s)
Microbiología del Suelo , Suelo/química , Humedales , Bahías , Ecosistema , Salinidad , Agua de Mar , Virginia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA