Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 119: 42-52, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23098613

RESUMEN

Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web.


Asunto(s)
Mercurio/química , Agua de Mar/química , Contaminantes Químicos del Agua/química , Contaminantes Atmosféricos/química , Animales , Exposición a Riesgos Ambientales , Cadena Alimentaria , Sedimentos Geológicos/química , Humanos , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Environ Res ; 119: 53-63, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23102631

RESUMEN

A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.


Asunto(s)
Mercurio/química , Modelos Teóricos , Agua de Mar/química , Contaminantes Químicos del Agua/química , Animales , Calibración , Exposición a Riesgos Ambientales , Peces/metabolismo , Humanos , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA